

Production and Characterization of Silver Nanoparticles using some Soil Microorganisms

Ph.D. Thesis

SUBMITTED IN PARTIAL FULFILLMENT FOR THE DEGREE OF Ph.D. IN PREPARATION OF SCIENCE TEACHER

(BOTANY)

By

Wafaa El-Sayed Abdallah Ali

B. Sc. & Edu. (2006)

General Diploma in Preparation of Science Teacher in Botany (2007)

Special Diploma in Preparation of Science Teacher in Botany (2008)

Master in Preparation of Science Teacher in Botany (2012)

Supervised by

Prof. Dr. Mohamed Ghareib Ibrahim

Professor of Microbiology, Faculty of Education, Ain Shams University

Dr. Mona Mostafa Saif

Assistant professor of Inorganic Chemistry, Faculty of Education, Ain Shams University

Dr. Medhat Ahmed Abu-Tahon

Lecturer of Microbiology, Faculty of Education, Ain Shams University

(2015)

APPROVAL SHEET

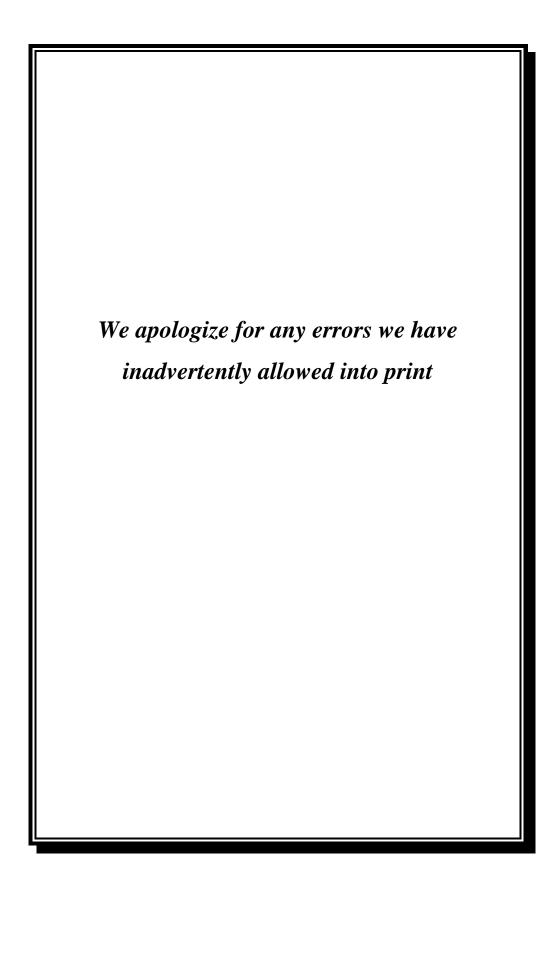
Name: Wafaa El-Sayed Abdallah Ali

Title: "Production and Characterization of Silver Nanoparticles using some Soil Microorganisms"

Supervisors

Approved

Prof. Dr. Mohamed Ghareib Ibrahim


Professor of Microbiology, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University

Dr. Mona Mostafa Saif

Assistant professor of Inorganic Chemistry, Chemistry Department, Faculty of Education, Ain Shams University

Dr. Medhat Ahmed Abu-Tahon

Lecturer of Microbiology, Biological Sciences and Geology Department, Faculty of Education, Ain Shams University

dissertation has not been previously submitted for any degree, at this or any other university. The references being checked whenever possible show the extent to which I have availed myself of the work of other authors. Wafaa Abdallah

To My Husband and my Son The essence of my life

ACKNOWLEDGEMENT

First of all, cordial thanks due to **ALLAH** who enabled me to overcome all the problems, which faced me throughout the work.

It is a great honor to express my deepest gratitude and appreciation to Dr. Mohamed Ghareib Ibrahim, Professor of Microbiology, Faculty of Education, Ain Shams University, for suggesting the point of this study, constant supervision, valuable help during writing, continuous encouragement and critical discussions.

Sincere gratitude is due to Dr. Mona Mostafa Saif, Assistant professor of inorganic chemistry, Faculty of Education, Ain Shams University for sharing in supervision and continuous encouragement throughout the work.

Sincere gratitude is also due to Dr. Medhat Ahmed Abo Tahon, lecturer of Microbiology, Faculty of Education, Ain Shams University for sharing in supervision, helping during practical work and continuous encouragement throughout the work.

So many great thanks to Prof. Dr. Mohammed Abd EL-aziz Fouad, Chairman of Department of Biological Sciences and Geology, Faculty of Education, Ain Shams University, for his continuous encouragement and providing facilities during the practical work.

I feel thankful to **Prof. Dr. Naglaa Zaki El-alfy, Ex- Chairman of Department of Biological Sciences and Geology, Faculty of Education, Ain Shams University**, for her continuous encouragement and providing facilities during the practical work.

Many thanks to my colleagues and all the members of Biological Sciences and Geology Department for their kind help and encouragement.

A word of thanks, a word of praise, for my family, for being so great in many ways that pushed me forward.

CONTENTS

Content	Page
List of abbreviations	vi
List of tables	viii
List of figures	X
Abstract	1
Preface	4
Historical Review	7
Materials & Methods	29
1- Microorganisms	29
2- Chemicals and glass wares	29
3- Growth media	30
4- Cultivation	31
a- Cultivation of bacteria	31
b- Cultivation of fungi	31
5- Extracellular biosynthesis of AgNPs	32
a- Using the Culture supernatant (CS)	32
b- Using Cell-free filtrate (CFF)	32
c- Using the washed biomass	32
6- Optimization of the reaction conditions	33
7- Characterization of AgNPs	33
a- Visual observations	33
b- UV-Vis spectroscopy	33

Content	Page	
c- High Resolution-Transmission Electron Microscopy (HR-TEM)	34	
d- X-ray diffraction (XRD)	35	
e- Energy dispersive X-rays (EDX)	35	
f- Dynamic light scattering (DLS)	35	
g- Zeta potential measurement	36	
h- Fourier Transform Infrared (FTIR) Spectroscopy	36	
i- Fluorescence emission spectrum	36	
8- Biochemical assays	37	
a- Nitrate reductase (EC 1.6.6.4) assay	37	
b- Effect of temperature and pH on enzyme activity and stability	39	
9- Antibacterial activity of the produced AgNPs	40	
Experimental Results	41	
CHAPTER I Screening Of Some Soil Microorganisms As Possible Sources For The Biosynthesis Of Extracellular Silver Nanoparticles	41	

Content	Page
CHAPTERII	
Biosynthesis And Characterization Of Extracellular Silver Nanoparticles Using Culture Supernatant From The Fungus Cunninghamella Phaeospora	59
First: Biosynthesis of AgNPs:	59
1- Factors affecting the biosynthesis reaction	61
a- Reaction temperature	61 64
b-pH values of the reaction mixture c- Concentrations of AgNO ₃ d- Activity and stability of NR enzyme	66 68
2- Environmental conditions	70
controlling production of the CS3- Other mechanistic aspects	72
a- Fourier transform infrared (FTIR)	72
b- Fluorescence emission spectrum of CS	73
Second: Characterization of the produced AgNPs	74

CHAPTERIII	
Biosynthesis And Characterization Of	
Extracellular Silver Nanoparticles	
Using Cell Free Filtrate From The	80
Fungus Emercilla Quadrilineata	
First: Biosynthesis of AgNPs:	80
1- Factors affecting the biosynthesis reaction	83
a- Reaction temperature	83
b- pH values of the reaction mixture	86
c- Concentrations of AgNO ₃	88
d- Activity and stability of NR enzyme	90
2- Factors affecting formation and composition of the CFF	92
Second: Some Mechanistic Aspects:	94
a- Fourier transform infrared (FTIR)	94
b- Fluorescence emission spectrum of CS	95
Third: Characterization of the produced NPs	96

CONTENTS

Content	Page
C H A P T E R IV Antibacterial Activities Of The Produced Silver Nanoparticles	102
Discussion	108
Summary	125
References	134
Arabic summary	

LIST OF ABBREVIATIONS

Abbreviation	Meaning
μM	Micromolar
μm	Micrometer
μmol	Micromole
$AgNO_3$	Silver Nitrate
AgNPs	Silver Nanoparticles
Au	Absorbance unit
AUMC	Assuit University Mycological Center
CFF	Cell Free Filtrate
CS	Culture Supernatant
DLS	Dynamic light scattering
EDX	Energy dispersive X-rays
FTIR	Fourier Transform Infrared
fcc	face centered cube
h	Hour
HR-TEM	High Resolution-Transmission
IIK-IEMI	Electron Microscopy
JCPDS	Joint Committee on Powder
JCI DS	Diffraction Standards
keV	kilo-electron volt
KV	Kilo volt
LB	Luria broth
mA	Milliampere
MGYP	Malt Glucose Yeast Peptone
Min	Minute
mm	Millimeter
mM	Millimolar
mV	Milli-volt

List of abbreviations

Abbreviation	Meaning
NA	Nutrient agar
NB	Nutrient broth
NEED	N-(1-napthy) Ethelenediamine
NEED	dihydrochloride
nm	Nanometer
nmol	Nanomole
NPs	Nanoparticles
NR	Nitrate Reductase
RPM	Revolutions per minute
SPR	Surface Plasmon Resonance
UV-Vis	Ultraviolet-visible
XRD	X-ray diffraction

LIST OF TABLES

Table no.	Title	Page
1-a.	Screening of some filamentous fungi for the biosynthesis of extracellular AgNPs	43
1-b.	Screening of some bacteria for the biosynthesis of extracellular AgNPs	44
2-a.	Formation of extracellular AgNPs by the three experimented fungi	49
2-b.	Formation of extracellular AgNPs using CS from the seven experimented bacteria	58
3.	Effect of reaction temperature on the biosynthesis of extracellular AgNPs using CS from C. phaeospora	64
4.	Effect of reaction pH values on the biosynthesis of extracellular AgNPs using CS from C. phaeospora	66
5.	Effect of reaction temperature on the biosynthesis of extracellular AgNPs using CFF from <i>E. quadrilineata</i>	86
6.	Effect of reaction pH values on the biosynthesis of extracellular AgNPs using CFF from <i>E. quadrilineata</i>	88