

# Discovery of Certain Organic Compounds as Targeted Anticancer Agents

### Thesis Presented by

## Maiy Youssef Mohamed Jaballah

BSc. in Pharmaceutical Sciences (May 2002)
MSc. in Pharmaceutical Sciences (Pharmaceutical Chemistry) (December 2007)
Assistant Lecturer of Pharmaceutical Chemistry
Ain Shams University
Submitted in partial fulfillment of the
Doctorate of Philosophy Degree
In Pharmaceutical Sciences (Pharmaceutical Chemistry)
Under the supervision of

# Khaled Abouzid Mohamed Abouzid

Professor and Chairman of Pharmaceutical Chemistry
Department
Faculty of Pharmacy
Ain Shams University

#### **Nasser Saad Mohamed Ismail**

### **Rabah Ahmed Taha Serya**

Professor of Pharmaceutical Chemistry Faculty of pharmacy -Ain Shams University Associate professor of Pharmaceutical Chemistry Faculty of pharmacy -Ain Shams University

Faculty of Pharmacy

Ain Shams University

## Acknowledgements

I owe my deepest appreciation and gratitude to **Professor Dr. Khaled Abouzid Mohamed Abouzid,** Professor and Chairman of pharmaceutical chemistry department, for his scientific supervision. I am really sincerely and profoundly indebted to him for his priceless guidance, endless support and immense knowledge during all stages of this work. I am heartily grateful to their indispensible opinion, real interest, invaluable advices, trust, caring, eminent guidance, and untiring help throughout the whole work. I truly thank him for his great efforts which allowed this thesis to appear in its final form.

I owe my truthful gratitude to Dr. Nasser Saad, Professor of Pharmaceutical Chemistry, and Dr. Rabah Taha; Associate professor of Pharmaceutical Chemistry for their keen and thorough revision of all thesis. I am heartily grateful to their guidance and help throughout the work.

I acknowledge with thankfulness all my colleagues in Pharmaceutical Chemistry Department, for their friendly cooperation, support and their continous aid.

Also I would like to express my gratitude to the National Cancer Institute, Maryland, U.S.A for performing the in-vitro anticancer assay of the synthesized compounds.

Finally, I am profoundly indebted to my parents and my dear family for their unconditional love and aid, endless patience, understanding, encouragement and full support all throughout the whole long way.

## **Contents**

## **Table of Contents**

| Acknowle       | dgements                                                                  | II         |
|----------------|---------------------------------------------------------------------------|------------|
| List of Figu   | uresV                                                                     | <b>/</b> I |
| List of Tab    | lesVI                                                                     | II         |
| List of Abb    | oreviationsI                                                              | X          |
| 1. Intro       | duction1                                                                  | 8          |
| 1.1 Ca         | ncer1                                                                     | 8          |
| 1.1.1          | 0verview1                                                                 | 8          |
| 1.1.2          | Hallmarks of cancer1                                                      | 9          |
| 1.1.3          | Causes of Cancer                                                          | 1          |
| 1.2 Th         | nerapeutic approaches of cancer2                                          | 2          |
| 1.2.1          | Surgery                                                                   | 2          |
| 1.2.2          | Radiation therapy2                                                        | 2          |
| 1.2.3          | Chemotherapy2                                                             | 2          |
| 1.2.4          | Hormonal therapy                                                          | 3          |
| 1.2.5          | Targeted therapy                                                          | 6          |
| 2. Ratio       | nale and Design4                                                          | 4          |
| 2.1 SA         | R study of VEGFR-2 inhibitors4                                            | 5          |
| 2.1.1          | Strategies adopted for developing novel pyridazine-based scaffolds4       | 8          |
| 2.2 Pr         | eliminary evaluation of the designed compounds using Molecular docking: 5 | 1          |
| 2.3 Sy         | nthetic schemes for synthesis of the designed compounds:                  | 4          |
| 2.3.1          | Scheme 1 for preparation of intermediates:                                | 4          |
| 2.3.2          | Scheme 2: Preparation of final compounds XIVa,b5                          | 6          |
| 2.3.3          | Scheme 3: Preparation of final compounds XVII, XIXa-c5                    | 6          |
| 2.3.4          | Scheme 4: Preparation of final compounds XXIIa-f5                         | 7          |
| 2.3.5          | Scheme 5: Preparation of final compounds XXVIa-c5                         | 7          |
| 2.3.6<br>XXVII | Scheme 6: Preparation of final compounds XXIXa-c, XXXIa-c, XXXII 58       | I,         |

## **Contents**

|    | 2.3.7   | Scheme7: Preparation of final compounds XLa-e, XLIa,b, XLII                     | 60  |
|----|---------|---------------------------------------------------------------------------------|-----|
|    | 2.3.8   | Scheme 8: Preparation of final compounds XLIIIa,b                               | 61  |
| 3. | Resu    | lts and Discussion                                                              | 62  |
|    | 3.1 Ch  | nemistry                                                                        | 62  |
|    | 3.1.1   | Scheme 1                                                                        | 62  |
|    | 3.1.2   | Scheme 2                                                                        | 67  |
|    | 3.1.3   | Scheme3                                                                         | 68  |
|    | 3.1.4   | Scheme 4                                                                        | 72  |
|    | 3.1.5   | Scheme 5                                                                        | 74  |
|    | 3.1.6   | Scheme 6                                                                        | 77  |
|    | 3.1.7   | Scheme 7                                                                        | 84  |
|    | 3.1.8   | Scheme 8                                                                        | 88  |
|    | 3.2 Bi  | ological Evaluation                                                             | 89  |
|    | 3.2.1   | In vitro VEGFR-2 tyrosine kinase inhibitory activity                            |     |
|    | 3.2.1.1 | Initial screening at single dose of 10 μM concentration                         | 89  |
|    | 3.2.1.4 | VEGFR2 investigational studies                                                  | 97  |
|    | 3.2.2   | In vitro antiproliferative activity against NCI 60-cell line                    |     |
|    | 3.2.3   | In vitro cytotoxic activity against T47D for selected compounds (IC $_{50}$ ) . | 109 |
|    | 3.2.4   | Effect of Compound XXIIe on apoptotic pathway: measuring the                    |     |
|    | caspas  | se 3                                                                            | 111 |
| 4. | ADM     | ET study:                                                                       | 113 |
| 5. | Concl   | lusion                                                                          | 119 |
| 6. | Expe    | rimental                                                                        | 121 |
|    | 6.1 Ch  | iemistry                                                                        | 121 |
|    |         | Materials and instrumentation                                                   |     |
|    | 6.1.2   | Synthesis                                                                       | 122 |
|    | 6.2 Bi  | ological evaluation:                                                            | 169 |
|    |         | In vitro VEGFR-2 tyrosine kinase activity                                       |     |

## **Contents**

| 6.2.2    | In vitro Anti-proliferative activity against 60 cell line panel          | 171 |
|----------|--------------------------------------------------------------------------|-----|
| 6.2.3    | In vitro HUVEC Anti-proliferative assay                                  | 173 |
| 6.2.4    | Invitro T47D anti-proliferative assay                                    | 174 |
|          | RNA extraction, Real time PCR analysis and quantification of active Casp |     |
|          | olecular docking study                                                   |     |
| 6.3.1    | Protein preparation for docking                                          | 176 |
| 6.4 Fi   | eld alignment                                                            | 177 |
| 7. Refer | ences                                                                    | 178 |

## **List of Figures**

| List of Figures                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1: Hallmarks of Cancer20                                                                                                                                                                                         |
| Figure 2: Causes of cancer21                                                                                                                                                                                            |
| Figure 3: Regulation of tumorigenic programming by activation of kinases27                                                                                                                                              |
| Figure 4: Protein Kinase ATP binding site30                                                                                                                                                                             |
| Figure 5: Protein kinase binding site; Active and Inactive confirmations31                                                                                                                                              |
| Figure 6: Four types of reversible binding mode35                                                                                                                                                                       |
| Figure 7: Tumor angiogenesis and inhibitors of VEGFR-2 signalling38                                                                                                                                                     |
| Figure 8: Small-molecule kinase inhibitors binding to the vascular endothelial growth factor receptor (VEGFR)46                                                                                                         |
| Figure 9: Bioisoteric modifications, optimization and development of pyridazine derivatives based on the starting point for the discovery of Sorafenib49                                                                |
| Figure 10: Series 551                                                                                                                                                                                                   |
| Figure 11: Binding mode of sorafenib (21) to VEGFR-2 hinge region through hydrogen bonding and hydrophobic interaction <sup>111</sup> 52                                                                                |
| Figure 12: The bar graphs showing the HUVECs growth percentage after treatment with the target compounds96                                                                                                              |
| Figure 13: The alignment between the X-ray bioactive conformer of the lead compound (colored in red) and the docked pose of the same compound at VEGFR-2 binding site98                                                 |
| Figure 14: Field alignment of compound XXIXb and Sorafenib showing similar molecular fields beween the pyridazin-2-one (in XXIXb) and the pyridyl head group (in Sorafenib) suggesting a similar binding mode to VEGFR2 |
| Figure 15: Example of mean graph produced from NCI 60 cell line screening program. Mean graph of compound (XVIIIa) colour codes are given for each cell line.                                                           |
| Figure 16: Caspase 3 RT-PCR for compound XXIIe; exhibiting Caspase 3                                                                                                                                                    |

concentration in IU/ml......112

# **List of Figures**

| Figure 19: Plot of human intestinal absorption (HIA) and blood brain bathe newly synthesized compounds | - |
|--------------------------------------------------------------------------------------------------------|---|
| Figure 20: VEGFR-2 SAR study of the synthesized compounds; (a) Series                                  |   |
| Figure 21: SAR studies of T47D antiproliferative activities of (a) Series 3                            |   |

## **List of Tables**

# **List of Tables**

| Table 1: Classes of aromatase inhibitors24                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2: FDA approved small molecules VEGFR-2 inhibitors39                                                                                                                                      |
| Table 3: Docking energy and amino acids involved in the binding interactions of some of the designed compounds representing each series (1 to 5)52                                              |
| Table 4: Percent inhibition of VEGFR-2 enzymatic activity achieved by the targeted compounds at 10 μM89                                                                                         |
| Table 5: The IC <sub>50</sub> values for compounds (XXIIb, XXVIb, XXIXa, XXIXb and XXXVII) 94                                                                                                   |
| Table 6: The effect of compounds (XXIIb, XXVIb, XXIXa, XXIXb and XXXVII) on HUVEC proliferation at 10 μM96                                                                                      |
| Table 7: Molecular docking investigational studies on VEGFR299                                                                                                                                  |
| Table 8: Cell growth percentage of NCI 60 cancer cell lines exhibited by investigated finalcompounds (XIXa, XXVIc, XXIXb, XXIXc, XXXa,XXXb,XXXIb, XLa, XLb, XLe, XLIa, XLIb, XLII, XLIIIa)  104 |
| Table 9: The IC <sub>50</sub> values of compounds (XXIIb, XXIId, XXIIe, XXXIb, XLb, XLc, XLd, XLe, XLIIIb) of their anti-proliferative activity against breast cancer cell line T47D 110        |
| Table 11: Computer-aided ADMET screening of the synthesized compounds 117                                                                                                                       |

### **List of Abbreviations**

## **List of Abbreviations**

**Å**: Angstrom

ABL: Abelson tyrosine kinase

ADMET: Absorption, Distribution, Metabolism, Excretion, and Toxicity study

ALK: Anaplastic lymphoma kinase

ANLL: Acute Non-Lymphocytic Leukemia

**AIs:** Aromatase Inhibitors **AQ Sol:** Aqueous solubility

Asp: Aspartate

ATP: Adenine-5'-triphosphate

BBB: Blood brain barrier

BCR: breakpoint cluster region protein

**BSA:** Bovine serum albumin **BTK:** Bruton's Tyrosine Kinase

°C: Celsius

C-Fms: Colony-Stimulating factor-1 receptor

**C-kit:** v-kit (Hardy-Zuckerman 4 feline) sarcoma viral oncogene **CHARMm**: Chemistry at HARvard Macromolecular Mechanics

**CNS:** Central nervous system **CYP 450:** Cytochrome P450

Cys: Cysteine

D<sub>2</sub>O: Deuterium oxide

**DFG**: Aspartate- Phenylalanine- Glycine

**DIPEA:** Diisopropyl ethylamine **DMF:** Dimethyl formamide **DMSO:** Dimethyl sulfoxide **DNA:** Deoxyribonucleic acid

**EI-MS:** Electron impact mass spectroscopy **EGFR:** Epidermal growth factor receptor **ERA:** Estrogen Receptor Antagonists

Fab: Fragment antigen-binding

FDA: Food and Drug Administration

**FGFR:** Fibroblast growth factor receptor **FLT**: FMS-like receptor tyrosine kinase

FT-IR: Fourier transform-Infrared

Glu: Glutamate

HIA: Human intestinal absorption

His: Histidine

### **List of Abbreviations**

**Hrs**: hours

**HUVEC:** Human umbilical vein endothelial cells

Hz: Hertz

**IC**<sub>50</sub>: Half-maximal inhibitory concentration **IGFR**: Insulin-like growth factor receptor

IRK: Insulin receptor kinase

ITK: Interleukin-2-inducible T-cell kinase

JAK: Janus kinase KDa: Kilo Dalton

KDR: Kinase insert domain receptor

Lys: Lysine

Lck: Lymphocyte-specific protein tyrosine kinase

**6-MP**: 6-Mercaptopurine

**m.p**.: Melting point

Min: Minutes
MHz: Mega hertz
μM: Micromole
mmol: Millimole
μl: Microliter

MS: Mass spectroscopy

NCI: National Cancer Institute
NIH: National Institutes of Health

nM: Nanomole

NMR: Nuclear magnetic resonance NRTK: Non-receptor tyrosine kinase NSCLC: Non-Small Lung Cell cancer PARP: Poly ADP ribose polymerase

**Pd-C**: Palladium on carbon **PDB**: Protein data bank

**PDGFR:** Platelet derived growth factor receptor

**PDT:** Photodynamic therapy

**Phe**: Phenyl alanine

PM: Picometre

**PPB:** Plasma protein binding

**Ppm**: Part per million **PSA**: Polar surface area **Psi**: Pound per Square Inch

Raf: v-raf murine sarcoma viral oncogene

Ras: Rat sarcoma

### **List of Abbreviations**

**RMSD**: Root mean square deviation

**RNA**: Riboneucleic Acid **rt**: Room temperature

**RTK:** Receptor tyrosine kinase

**SAR:** Structure activity relationship

**SMART:** string matching algorithms research tool **SRC**: Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene

**TEA**: Triethyl amine **THF**: Tetrahydrofuran

Tie-2: Tyrosine kinase with immunoglobulin-like and EGF-like domains 2

TK: Tyrosine kinase

**TKI**: Tyrosine kinase inhibitors. **TLC**: Thin layer Chromatography

VEGFR: Vascular endothelial growth factor receptor

Cancer, or malignant tumor, is a myriad of diseases involving abnormal cell growth with the potential to invade or metastasize to other parts of the body. therefore, there is a need for newer treatment strategies with novel drugs acting at different pathways for treatment of malignancies.

Targeted therapies act by blocking essential biochemical pathways or mutant proteins that are required for tumour cell growth and survival. In the past few decades, protein kinases has drawn much attention as being of the most important drug targets for treatment of many diseases; especially cancer. Since, dysregulation and mutation in this family of ezymes play causual role in the development and maintenance of different types of cancer. Particularly, Vascular endothelial growth factor receptor-2 (VEGFR2) which is implemented in the maintanence of angiogenesis.

Angiogensis; the growth of new blood vessels; is considered one of the important hallmarks of cancer. Hence there is a growing interest in VEGFR2 inhibition and its therapeutic implementation in cancer treatment in light of its unique ability to regulate cancer cell proliferation and metastasis through inhibiting angiogenesis, eventually leading to death of tumor cells.

In the current study, a series of pyridazine based scaffolds (**Series 1 to 5**) were designed and synthesized as VEGFR2 inhibitors. The design focused on exploration of the previous revealed SAR studies, bioisosteric modifications of the lead compounds both in market and in clinical studies as well as identification of the key interactions with the binding site *in silico*. The structures of synthesized compounds were confirmed by various spectral and microanalytical data.

Analysis of the VEGFR2 enzyme activity revealed that five of the synthesized compounds; namely (XXIIb, XXVIb, XXIXa, XXIXb and XXXVII) exhibited potent VEGFR2 inhibitory activity with IC50 values equal to 1.8 $\mu$ M, 1.3 $\mu$ M, 1.4 $\mu$ M, 107nM, 60nM respectively. Moreover, the above compounds were further evaluated for their VEGF-stimulated proliferation of human umbilical vein endothelial cells (HUVEC) revealing moderate to potent inhibition at 10  $\mu$ M concentration; especially XXVIb which displayed 99.82% inhibition.

Evaluation of the anti-proliferative activities of the compounds were attempted. Fourteen of the final Compounds (XIXa, XXVIc, XXIXb, XXIXc, XXXa, XXXb, XXXIb, XLa, XLb, XLe, XLIa, XLIb, XLII, XLIIIa) were selected by the National Cancer Institute "NCI" for single dose screening program at 10 μM in the full NCI 60 cell panel. While the 6-chloropyridazine derivative (XXXb) showed remarkably the lowest cell growth promotion, hence good anti-proliferative activity against different cell lines compared to the rest of the compounds; it was noticed that compounds (XLa, XLb, XLe, XLIIIa) demonstrated 71.4, 67.2, 64.6 and 47.2% growth inhibition almost exclusively against breast cancer cell line T47D.

Furthermore, nine of the synthesized compounds were evaluated for their antiproliferative activities against T47D cell line. Most of the investigated compounds showed  $IC_{50}$  in low nanomolar range; especially compounds **(XXIIe)** and **(XLd)**; they displayed  $IC_{50}$  values of 0.75 and 0.94 respectively.

Since it was reported that the aromatase enzyme is overexpressed in breast cancer cell line T47D, thus, aromatase inhibitory activity was measured for compounds (XXIIe) and (XLd), which displayed 89 and 82% inhibitiory activities respectively. These percent inhibition was superior to that of the refrence drug; Letrozole (aromatase percentage inhibition of 65%). Both compounds XXIIe and XLd displayed an  $IC_{50}$  against aromatase enzyme of 2.6 and 3.1  $\mu$ M respectively.

To further exploit anti-tumor effect of compound **XXIIe** in T47D cell line; Level of caspase 3 RNA for compound **XXIIe** was measured. Caspase3 levels; one of the crucial mediators of apoptosis in cancer cells, were elevated by 92 thousand folds upon treatment with **XXIIe** compared to the control. These results confirmed that **(XXIIe)** exhibited its antiproliferative activity against breast cancer cell line T47D via induction of apoptosis revealed in elevated Caspase3 levels as well as inhibition of aromatase enzyme

Finally, a thorough Molecular docking, using C-DOCKER protocol in Discovery Studio 3.5 Software, was attempted to investigate the binding mode of the targeted compounds and interpret their variable inhibitory activity. Computer aided ADMET study was also performed using the same software.

This study involved the synthesis of the following unavailable reported intermediates:

- 1. 1-(3,4-Dichlorophenyl)-3-(3-nitrophenyl)urea (Ia)
- 2. 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(3-nitrophenyl)urea(Ib)
- 3. 1-(3-Aminophenyl)-3-(3,4-dichlorophenyl)urea (IIa)
- **4.** 1-(3-Aminophenyl)-3-(4-chloro-3-(trifluoromethyl)phenyl)urea(IIb)
- 5. 1-(3,4-Dichlorophenyl)-3-(4-nitrophenyl)urea (IIIa)
- **6.** 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(4-nitrophenyl)urea (IIIb)
- 7. 1-(3,5-Dimethoxyphenyl)-3-(4-nitrophenyl)urea (IIIc)
- 8. 1-(4-Aminophenyl)-3-(3,4-dichlorophenyl)urea (IVa)
- 9. 1-(4-Aminophenyl)-3-(4-chloro-3-(trifluoromethyl)phenyl)urea (IVb)
- 10.1-(4-Aminophenyl)-3-(3,5-dimethoxyphenyl)urea (IVc)
- 11.3-(3,4-Dichlorobenzyl)-6-nitrobenzo[d]thiazol-2(3H)-one (VIa)
- 12.3-(3-Bromobenzyl)-6-nitrobenzo[d]thiazol-2(3H)-one (VIb)
- 13.6-Amino-3-(3,4-dichlorobenzyl)benzothiazol-2(3H)-one (VIIa)
- **14.**6-Amino-3-(3-bromobenzyl)benzothiazol-2(3H)-one **(VIIb)**
- 15.1H-Indazol-5-amine (IX)
- **16.** 1,2-Dihydropyridazine-3,6-dione **(X)**
- 17.3,6-Dichloropyridazine (XI)
- 18.3-Chloro-6-hydrazinylpyridazine (XV)
- 19.6-Chloro-[1,2,4]triazolo[4,3-b]pyridazin-3-amine (XVI)
- 20.6-[1,2,4]Triazolo[4,3-b]pyridazin-3-amine(XVIII)
- 21.6-(4-Nitrophenyl)pyridazin-3(2H)-one (XX)
- **22.**6-(4-Aminophenyl)pyridazin-3(2H)-one **(XXI)**
- 23.3-Nitro acetophenone (XXIII)
- 24.6-(3-Nitrophenyl)pyridazin-3(2H)-one (XXIV)
- **25.**6-(3-Aminophenyl)pyridazin-3(2H)-one (XXV)
- 26.N-(4-((6-Chloropyridazin-3-yl)oxy)phenyl)acetamide (XXVII)
- 27.6-(4-Aminophenoxy)pyridazin-3(2H)-one(XXVIII)
- 28.4-((6-Chloropyridazin-3-yl)amino)benzoic acid (XXXVIII)

- **29.**6-Methoxy-N-(4-nitrophenyl)pyridazin-3-amine (XXXV)
- **30.**N1-(6-methoxypyridazin-3-yl)benzene-1,4-diamine (XXXVI)

Also, it comprised the following new intermediates:

- **1.** 1-(3,5-Dimethoxyphenyl)-3-(3-nitrophenyl)urea (Ic)
- **2.** 1-(3-Aminophenyl)-3-(3,5-dimethoxyphenyl)urea (IIc)
- 3. N-(6-Chloropyridazin-3-yl)-1H-indazol-5-amine (XXXII)

In addition, the study involved the synthesis and the characterization of the following new-targeted compounds:

- **1.** 1-(3,5-Dimethoxyphenyl)-3-(pyridazin-3-yl)urea (XIVa)
- 2. 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(pyridazin-3-yl)urea (XIVb)
- 3. 1-(6-Chloro-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)-3-(3,4-dichlorophenyl)urea (XVII)
- **4.** 1-(3,4-Dichlorophenyl)-3-(6-morpholino-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)urea (XIXa)
- **5.** 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(6-morpholino-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)urea **(XIXb)**
- **6.** 1-(3-Methoxyphenyl)-3-(6-morpholino-[1,2,4]triazolo[4,3-b]pyridazin-3-yl)urea(XIXc)
- 7. 1-(3,4-Dichlorophenyl)-3-(4-(6-oxo-1,6-dihydropyridazin-3-yl)phenyl)urea (XXIIa)
- **8.** 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(4-(6-oxo-1,6-dihydropyridazin-3-yl)phenyl) urea **(XXIIb)**
- **9.** 1-(4-Chloro-2-methylphenyl)-3-(4-(6-oxo-1,6-dihydropyridazin-3-yl)phenyl)urea **(XXIIc)**
- 10.1-(4-Chlorophenyl)-3-(4-(6-oxo-1,6-dihydropyridazin-3-yl)phenyl)urea (XXIId)
- **11.**1-(4-(6-0xo-1,6-dihydropyridazin-3-yl)phenyl)-3-(4-(trifluoromethyl)phenyl)urea **(XXIIe)**
- 12.1-(4-(6-0xo-1,6-dihydropyridazin-3-yl)phenyl)-3-(3-(methoxy)phenyl)urea (XXIIf)
- 13.1-(3,4-Dichlorophenyl)-3-(3-(6-oxo-1,6-dihydropyridazin-3-yl)phenyl) urea(XXVIa)