

STUDY ON SOME SIRTUINS IN HUMAN BREAST CANCER

A Thesis Submitted for the Requirement for the Degree of Doctor of Philosophy

(Zoology)

By

OMNIA AHMED MOHAMED MANSOUR

B.Sc. & Education (Biological and Geological Sciences), Alexandria
 University, 2005
 M.Sc. (Zoology), Alexandria University, 2011

Under the supervision of:

Prof. Dr Hamdy Hamed Swelim

Prof. of Cell Biology
Dept. of Zoology, Faculty
of Science, Ain Shams University

Prof. Dr.

Salah Mahmoud Abdel-Rahman

Dept. of Nucleic Acid Research, City of Scientific Research and Technological Applications, Alexandria University

Prof. Dr.

Mohamed Hussein shwaireb

Prof. of Experimental Zoology, Dept. of Zoology, Faculty of Education, Alexandria University

Prof. Dr.

Amani Hussein Kazem

Prof. of Pathology, Dept. of Pathology, Medical Research Institute, Alexandria University

Biography

Full Name : Omnia Ahmed Mohamed Mansour

Birth Date : 10/10/1982

Birth Place : Saudi Arabia

Graduation Date : 2005

Awarded Degrees: 1- B.Sc. & Education (Biological and

Geological Sciences, very good with honor, 2005),

2- M.Sc. (Zoology, 2011)

Religion : Muslim

Appointment Date : 2015

Registration Date : 2016

Supervisors

1- Prof. Dr. Hamdy Hamed Swelim

Prof. of Cell Biology, Department of Zoology, Faculty of Science, Ain Shams University

2- Prof. Dr. Mohamed Hussein shwaireb

Prof. of Experimental Zoology, Department of Zoology, Faculty of Education, Alexandria University

3- Prof. Dr. Salah Mahmoud Abdel-Rahman

Department of Nucleic Acid Research, City of Scientific Research and Technological Applications, Alexandria, Egypt

4- Prof. Dr. Amani Hussein Kazem

Prof. of Pathology, Department of Pathology, Medical Research Institute, Alexandria University

Abstract

Mammalian Sirtuins have been shown to perform distinct cellular functions and deregulated expression of these genes was reported to be involved in the development of various malignancies including breast cancer. An increasing number of evidence indicates that Sirtuins have both tumor promoter and tumor suppressor functions. However, the roles of Sirtuins have not been well-studied in breast cancer. In the present study, quantitative expression levels of Sirtuins (SIRT1-3) together with a set of cancer related genes (cMYC, P53, SOD and HIF-1α genes) were assessed in malignant breast cancer and non-malignant control samples by using a high-throughput real-time PCR method. As a result, Sirtuins were found to be differentially expressed in breast cancer tissues and control samples, respectively. Particularly, expressions of SIRT1 (p = 0.035) and SIRT3 (p= 0.033) were found to be significantly upregulated, whereas SIRT2 (p = 0.032) gene was shown to be downregulated in breast cancer tissues compared to control samples in our study. Additionally, the expression levels of SIRT1-3 genes were correlated to both the selected cancer related genes and to pathological parameters of breast cancer patients. In conclusion, SIRT1 and SIRT3 genes may act as oncogenes, whereas SIRT2 gene may operate as a tumor suppressor gene in human breast cancer.

Keywords

Breast cancer, SIRT1, SIRT2 and SIRT3

ACKNOWLEDGMENT

First of all, thanks to **ALLAH** for the help and strength offered to me to accomplish this work. Without his want, nothing could be reached.

I would like to express my sincere cordial feelings towards my family who faithfully support me throughout my life.

I extend my appreciation and profound gratitude to **Prof. Dr. Hamdy Hamed Swelim** for his kind help, fine revision, continuous encouragement and support. In addition, he is always accessible and willing to help his students. It is an honor being supervised by him.

I have the pleasure to express my heart-felt gratitude to **Prof. Dr. Mohamed Hussein shwaireb,** who support me a lot and devoted much of his time and effort in supervising this work. It is an honor being supervised by him.

I wish to express my deepest thanks to **Prof. Dr. Salah Mahmoud Abdel-Rahman**, for his continuous helping, encouragement, endless support and for his kindness supervising throughout the work.

I would like to express my gratitude to **Prof. Dr. Amani Hussein Kazem** for her good manners, support, efficient interest and continuous helping. She gave me the possibility to complete this thesis and to use departmental data.

I wish to express my thanks to **Prof. Dr. Abeer El Wakil** for sharing her experience in this work and helping in reviewing the paper.

CONTENT

	Page
I. Introduction	1
II. Aim of the Work	8
III. Review of Literature	9
1. Breast cancer	9
1.1. Breast anatomy	9
1.2. Etiology and risk factors	12
1.3. Breast cancer prognosis	15
1.3.1. Age (years)	16
1.3.2. Histological type	17
1.3.3. Tumor size (T)	19
1.3.4. Tumor grade	20
1.3.5. Lymph node metastasis	21
1.3.6. Lymphovascular invasion (LVI)	24
1.3.7. Estrogen receptor α (ER α)	25
1.3.8. Human epidermal growth factor	
receptor-2 (HER2)	28
1.4. Breast cancer epidemiology, incidence	
and mortality	29

2. Altered gene expression in cancer	31
2.1. Myelocytomatosis (cMYC)	32
2.2. Protein 53 (P53)	36
2.3. Superoxide dismutase (SOD)	39
2.4. Hypoxia inducible factor-1 alpha (HIF-1α)	42
3. Epigenetics	44
3.1. Histone deacetylases (HDACs) enzymes	47
3.1.1. Sirtuins	52
3.1.1.1. SIRT1	58
3.1.1.2. SIRT2	62
3.1.1.3. SIRT3	64
	_
IV. Materials and Methods	69
IV. Materials and Methods	69
1. Subjects	69
Subjects Pathological assessment by H&E staining	69 70
 Subjects Pathological assessment by H&E staining IHC staining technique 	69 70 71
 Subjects	69 70 71 71
 Subjects	69 70 71 71 72
1. Subjects	69 70 71 71 72 73

4.2. RNA extraction	77
4.2.1. Reagents	77
4.2.2. Procedure	78
4.3. RNA quantification	80
4.4. Preparation of the qRT-PCR reaction	81
4.4.1. Reagents	81
4.4.2. Procedure	83
4.5. Interpretation and analyzing the results	85
4.5.1. Comparative Ct method	86
5. Statistical analysis of the data	87
V. Results	88
1. Pathological prognostic parameters of breast	
cancer patients	88
2. The relative expression level of some sirtuins	
and selected cancer related genes in human	
and selected cancer related genes in human breast cancer	124
	124
breast cancer	124 124
breast cancer	
breast cancer	
breast cancer	124

2.4. cMYC gene expression in human breast	
cancer	128
2.5. P53 gene expression in human breast	
cancer	130
2.6. SOD gene expression in human breast	
cancer	131
2.7. HIF-1α gene expression in human breast	
cancer	133
3. The correlations between SIRT1, SIRT2, SIRT3,	
cMYC, P53, SOD and HIF-1α genes expressions	
in human breast cancer samples	135
4. The correlations between SIRT1, SIRT2, SIRT3,	
cMYC, P53, SOD and HIF-1 α genes expressions	
and the pathological parameters of breast	
cancer patients	139
VI. Discussion	146
1. Pathological characteristics of breast cancer	
patients	148
2. Gene expressions in human breast cancer	
samples	151

IX. Arabic Summary		
VIII. References	168	
VII. Summary and Conclusion	163	
of breast cancer patients	160	
genes expressions and the pathological parameters		
SIRT3, cMYC, P53, SOD and HIF-1 α		
4. The correlations between SIRT1, SIRT2,		
genes expressions in human breast cancer samples.	155	
SIRT3, cMYC, P53, SOD and HIF-1 α		
3. The correlations between SIRT1, SIRT2,		

LIST OF TABLES

No.		Page
(1)	Scoring system for assessment of HER2 protein overexpression	75
(2)	Scoring system (intensity score) for	
	assessment of ER protein overexpression	76
(3)	Primers sequences	82
(4)	qRT-PCR reaction mix preparation	84
(5)	Thermal cycling program	85
(6)	Pathological prognostic parameters of	
	breast cancer patients	91
(7)	Statistical parameters concerning SIRT1 gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	124
(8)	Statistical parameters concerning SIRT2 gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	126
(9)	Statistical parameters concerning SIRT3 gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	127
10)	Statistical parameters concerning cMYC gene	
	expression in malignant as compared to non-	

	malignant samples in human breast cancer	129
(11)	Statistical parameters concerning P53 gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	130
(12)	Statistical parameters concerning SOD gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	132
(13)	Statistical parameters concerning HIF-1α gene	
	expression in malignant as compared to non-	
	malignant samples in human breast cancer	133
(14)	The correlations between SIRT1, SIRT2, SIRT3,	
	cMYC, P53, SOD and HIF-1 α genes expressions	
	in human breast cancer samples	136
(15)	The correlations between SIRT1, SIRT2, SIRT3,	
	cMYC, P53, SOD and HIF-1 α genes expressions	
	and the pathological parameters of breast cancer	
	patients	140

LIST OF FIGURES

No.		Page
(1)	Anatomy of the female breast	10
(2)	Schematic diagram of breast anatomy	11
(3)	Normal structure of breast (H&E staining)	11
(4)	The histological types of breast cancer	18
(5)	Steroid hormone action inside the cell	27
(6)	HER2 expression in cancer.	29
(7)	Effects of c-Myc expression.	34
(8)	The p53-mediated response to cellular stress	38
(9)	ROS generation and scavenging	41
(10)	The hypoxia-inducible factor pathway	43
(11)	The hallmarks of cancer	47
(12)	Histone acetylation: a mechanism regulating gene	
	expression	49
(13)	Enzymatic activities of sirtuins	53
(14)	Sirtuins subcellular localization	57
(15)	Menopausal Status among patients with breast cancer.	. 92
(16)	The histological types of breast cancer among	
	patients	. 92
(17)	A section of normal breast tissue	94