GENETIC BEHAVIOUR OF SOME AGRONOMIC AND PHYSIOLOGICAL TRAITS IN BARLEY DIALLEL CROSSES UNDER MARYOUT CONDITIONS

SOAD SAYED ABO EL-FOTOH AHMED

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2005

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Crop Breeding)

Department of Agronomy
Faculty of Agriculture
Ain Shams University

Approval Sheet

GENETIC BEHAVIOUR OF SOME AGRONOMIC AND PHYSIOLOGICAL TRAITS IN BARLEY DIALLEL CROSSES UNDER MARYOUT CONDITIONS

SOAD SAYED ABO EL-FOTOH AHMED

B.Sc. Agric. Sci. (Agronomy), Ain Shams University, 2005

Dr.	Bahy raghib Bekheit
	Prof. Emeritus of Agronomy, Faculty of Agriculture., Assiut
	University
Dr.	Ali Mohammed Esmail
	Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams
	University
Dr.	Ahmed Abd El-Sadik Mohamed
	Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams
	University.
Dr.	Kamal Abd El-Aziz El-Shouny
	Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams
	University

This thesis for MSc degree has been approved by:

Date of examination: 20/5/2015

GENETIC BEHAVIOUR OF SOME AGRONOMIC AND PHYSIOLOGICAL TRAITS IN BARLEY DIALLEL CROSSES UNDER MARYOUT CONDITIONS

SOAD SAYED ABO EL-FOTOH AHMED

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2005

Under the supervision of:

Dr. Kamal Abd El-Aziz El-Shouny

Prof. Emeritus of Agronomy, Agronomy Department, Faculty of Agriculture, Ain Shams University.(Principal Supervisor)

Dr. Ahmed Abd El-Sadik Mohamed

Prof. Emeritus of Agronomy, Agronomy Department, Faculty of Agriculture, Ain Shams University

Dr. Hossam Ibrahim Ali

Assistant Prof. and Head of Research, Plant Breeding unit, Plant Genetic Resources Department, Desert Research Center

ABSTRACT

Soad Sayed Abo El-Fotoh: Genetic Behaviour of Some Agronomic and Physiological Traits in Barley Diallel Crosses Under Maryout Conditions. Unpublished M.Sc. Thesis, Department of Agronomy, Faculty of Agriculture, Ain Shams University, 2015.

The main objectives of this study were to evaluate the performance of barley genotypes for some agronomic and physiological traits under well watered and rainfed conditions in order to identify the best genotypes which can be grown under drought stress conditions and to estimate some genetic parameters as a basis of improving barley under rainfed conditions at Maryout region. Six parents of barley (*Hordeum vulgare* L.) namely: the cv. G126(P₁), L Su12303(P₂) (are local genotypes), L 105/20(P₃), L105/27(P₄), L105/32(P₅) and L 105/36(P₆) (are introduced from ICARDA) were chosen to achieve the present study. In 2008/09 season, the six parents were crossed in a 6×6 diallel matting design (excluding reciprocals) and seeds of the 15 F₁'s were obtained. In 2009/10 season, two adjacent field trials each included the 15 F₁ crosses and their respective parents (21 genotypes) were conducted in a randomized complete block design with three replications at Maryout Agriculture Experiment Station of Desert Research Center (North Western Coast of Egypt). Each experiment was devoted for one of the two following irrigation treatments: a) rainfed treatment (drought stress treatment) and b) rainfed + 2 supplemental irrigations given at sowing date and flowering stage (well watered treatment). The following traits were measured: heading date, maturity date, plant height, flag leaf area, flag leaf angle, no. of spikes/plant, spike length, no. of spikelets/spike, no. of grains/spike, 100-kernel weight, grain yield/plant, straw yield/plant, harvest index, relative water content (RWC), proline content, chl. "a" content, chl. "b" content and carotenoids content. Data of all traits recorded from each experiment were subjected to the ordinary analysis of variance and estimates of combining ability effects were made by applying **Griffing**'s (1956) method 2 and model 1. Drought susceptibility index (S) for grain yield\plant and phenotypic correlation coefficients were also estimated.

The results of analysis of variance indicated that all traits were significantely affected by soil moisture deficit and presence of sufficient genetic variability among genotypes. Drought stress caused significant reduction in all traits, except proline content which was significantly increased when plants were subjected to drought stress. Overall genotypes, harvest index recorded the lowest reduction percentage (6.06%) followed by 100-kernel weight (7.74%) and spike length (8.41%), while carotenoids content recorded the highest reduction percentage (43.32%) followed by chl. "b" content (30.74%) and RWC (30.67%). Generally, 100-kernel weight, spike length, harvest index, straw yield/plant, no. of spikelets/spike, plant height and maturity date recorded reduction percentages less than 15%, suggesting that these traits could be used as selection criteria for screening drought resistant barley genotypes in breeding programs. Results of drought susceptibility index (S) showed that the crosses; P₁xP₃, P₁xP₄, P₂xP₆, P₃xP₄, P₃xP₅, P₄xP₅, P₄xP₆ and P₅xP₆ were the most drought tolerant for grain yield/plant.

Values of heterosis greatly varied under the two irrigation regimes. For better-parent heterosis (heterobeltiosis), the cross P_5xP_6 recorded the highest value of 284.09% under well water conditions, whereas the cross P_2xP_4 recorded the highest value of 94.52% under rainfed conditions for carotenoids content. The crosses showing the best heterobeltiosis under well watered and/or rainfed conditions could be recommended to improve the respective traits. The obtained results also indicated that the five F_1 hybrids; P_2xP_4 , P_3xP_4 , P_3xP_5 , P_3xP_6 and P_5xP_6 , expressed higher mid and better parent heterosis under rainfed condition than under well watered condition for grain yield/plant, therefore if the hybrids development is feasible in barley these hybrids are considered more desirable to be grown under water shortage conditions for increasing grain yield per unit area and selection could be exercised in segregating generations for developing drought tolerant genotypes.

The results revealed that mean squares associated with general (GCA) and specific (SCA) combining ability were found to be highly significant for all the studied traits under both irrigation regimes and their combined analysis, indicating that both additive and non-additive genetic effects were involved in the inheritance of these traits. The ratios of k^2GCA/k^2SCA were less than unity under the two irrigation treatments and combined data, suggesting that the studied traits were mainly controlled by the non-additive gene effects. The interactions of GCA and SCA with irrigation treatments were also highly significant for all the studied traits. The two parental lines 105/32 and 105/36 appeared to be good general combiners for grain yield/plant and one or more of its components and physiological traits under normal and/or drought stress conditions. While the cross P_5xP_6 was good specific cross-combination for grain yield/plant and most of its components and the physiological traits under drought stress conditions.

Broad sense heritability estimates were obtained which ranged from 62.85% for flag leaf angle to 99.83% for chlorophyll "b" content under well watered conditions and from 38.68% for flag leaf angle to 99.86% for spike length under rainfed conditions. Significant and positive phenotypic correlation coefficients were found between grain yield/plant and each of no. of spikes/plant, no. of spikelets/spike, no. of grains/spike and RWC under the two irrigation treatments.

Key words: Barley (*Hordeum vulgare*, **L.**), Rainfed, Supplemental irrigation, Drought stress, Drought tolerant, Stress susceptibility index, Heterosis, Combining ability, Broad sense heritability and Phenotypic correlation.

ACKNOWLEDGMENT

Firstly, I wish to express my great and sincere gratitude to **ALLAH** who give me the prosperity and ability to achieve this work.

The author wishes to express his great appreciation, sincere thanks, and deepest grateful to **Prof. Dr. Kamal Abd El-Azize El-Shouny**, Emeritus Professor of Plant Breeding, Agronomy Department, Faculty of Agriculture, Ain Shams University, for suggesting the problem, drawing the plan of the work, valuable help, advise, kind guidance and continuous encouragement during the courses and work.

Many thanks and appreciation to **Prof. Dr. Ahmed Abd El-Sadik Mohamed**, Emeritus Professor of Plant Breeding, Agronomy Department, Faculty of Agriculture, Ain Shams University, for his faithful encouragement, his continuous assistance, valuable guidance and help during the progress of this study and during the preparation of the manuscript.

I owe my thanks and appreciation to **Dr. Hossam Ibrahim Ali,** assistant Professor and head of Plant Breeding unit, Plant Genetic Resources Department, Dessert Research Center, for his faithful encouragement valuable guidance and for his helpful advice and for providing facilities to complete this investigation.

To my colleagues, to all staff members of Agronomy Department, Faculty of Agriculture, Ain Shams University and Plant Breeding Unit, Plant Genetic Resources Department, Desert Research Center, **my family** and to every one who participated in one way or another in this work.

CONTENTS

Title	Page
LIST OF TABLES	ii
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Effect of soil moisture deficit on agronomic and	
physiological traits in barley	4
2. Studies of genetic parameters under different systems of	
water regimes	13
3. Correlation studies	19
MATERIALS AND METHODS	22
I. Genetic materials	22
II. Experimental work	22
III. Statistical and genetic analysis	25
RESULRS AND DISCUSSION	36
A. Analysis of variance	36
B. Performance of barley genotypes under the two irrigation	41
regimes and their combined data	
C. Estimates of genetic parameters	62
1. Heterosis	62
2. Estimates of general and specific combining abilities	88
3. Heritability	117
D. Correlation studies	118
SUMMARY	125
REFERENCES	136
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Pag
1. Names, pedigree and origin of the six barley genotypes used in the study	26
2. Physical and chemical properties of the experimental site (Maryout) and irrigation water analysis.	27
3. Monthly average weather data at Maryout site in 2009/10 season	28
4. Total amount of water consumption (m³/fed.) in barley field for the two irrigation treatments during 2009/10 growing season at	
Maryout region	28
different barley genotypes overall irrigation treatment	29
6. Single analysis of variance for combining ability in method (2)7. Combined analysis of variance of method 2 giving	31
expectations of mean squares for the assumption of model 1 8. Mean squares of single analysis of variance under well watered (N) and rainfed conditions (D) for the studied traits in barley	33
genotypes	37
traits in barley genotypes	39
combined data (Comb.) at Maryout site	43
combined data (Comb.) at Maryout site	46

watered (N) and rainfed (D) conditions and their combined	l
data (Comb.) at Maryout site	
13. Performance of barley genotypes for straw yield and harvest	-
index traits under well watered (N) and rainfed (D))
conditions and their combined data (Comb.) at Maryout site	
14. Performance of barley genotypes for physiological traits	3
under well watered (N) and rainfed (D) conditions and their	<u>.</u>
combined data (Comb.) at Maryout site	
15. Percentages of heterosis over the mid and better parents for	
earliness traits in 15 F ₁ crosses of barley under well watered	l
(N) and rainfed conditions (D)	
16. Percentages of heterosis over the mid and better parents for	•
vegetative growth traits in 15 F ₁ crosses of barley under	•
well watered (N) and rainfed conditions (D)	
17. Percentages of heterosis over the mid and better parents for	•
grain yield, yield components, straw yield and harvest index	
traits in $15 F_1$ crosses of barley under well watered (N) and	l
rainfed conditions (D)	
18. Percentages of heterosis over the mid and better parents for	•
physiological traits in 15 F ₁ crosses of barley under well	l
watered (N) and rainfed conditions (D)	
19. Mean squares of general (GCA) and specific (SCA))
combining ability in F_1 crosses of barley for the studied traits	3
under well watered (N), rainfed conditions (D) and combined	l
(C)	
20. Estimates of general combining ability effects of the six	
barley parents evaluated for earliness traits under well	l
watered (N) and rainfed conditions (D)	
21. Estimates of specific combining ability effects of 15 F ₁ crosses	3
of barley evaluated for earliness traits under well watered (N)	
and rainfed conditions (D)	

22.	Estimates of general combining ability effects of the six	
	barley parents evaluated for the vegetative growth traits	
	under well watered (N) and rainfed conditions (D)	97
23.	Estimates of specific combining ability effects of 15	
	F1crosses of barley evaluated for the vegetative growth traits	
	under well watered (N) and rainfed conditions (D)	98
24.	Estimates of general combining ability effects of the six	
	barley parents evaluated for grain yield, yield components,	
	straw yield and harvest index traits under well watered (N)	
	and rainfed conditions (D)	10
25.	Estimates of specific combining ability effects of 15	
	F1crosses of barley evaluated for grain yield, yield	
	components, straw yield and harvest index traits under well	
	watered (N) and rainfed conditions (D)	10
26.	Estimates of general combining ability effects of the six	
	barley parents evaluated for physiological traits under well	
	watered (N) and rainfed conditions (D)	11
27.	Estimates of specific combining ability effects of 15	
	F1crosses of barley evaluated for physiological traits under	
	well watered (N) and rainfed conditions (D)	11
28.	Estimates of broad sense heritability (%) for the studied traits	
	under normal irrigation (N) and drought conditions (D) in	
	barley	11
29.	Values of simple phenotypic correlation coefficients estimated	
	between different pairs of traits under well watered treatment	
	in barley at Maryout site	12
30.	Values of simple phenotypic correlation coefficients between	
	different pairs of traits estimated under rainfed conditions in	
	barley at Maryout site	12
31.	Values of simple phenotypic correlation coefficients estimated	
	for the same trait under normal and rainfed treatment and	
	reduction percentages in barley at Maryout site	12

56

60
64
68
76
84
89
95
95
97
98