Therapeutic Application of Functional Electrical Stimulation and Transcranial Magnetic Stimulation in Rehabilitation of Hand Function in Incomplete Cervical Spinal Cord Injury

Chesis

Submitted in Partial Fulfillment of the requirements of the M.D in Physical Medicine, Rheumatology and Rehabilitation

By

Shereen Ismail Ahmed Fawaz

M.B, B.Ch, M.Sc. in Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Ain Shams University

Under Supervision of

Professor / Fatma Kamel Mohamed

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of medicine Ain Shams University

Professor /Ahmed Mohamed El Yasakv

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine Ain Shams University

Professor / Mohamed Reda Awad

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine, Al Azhar University

Professor / Heba Fawzy El Sheshtawy

Professor of Physical Medicine, Rheumatology and Rehabilitation Faculty of Medicine Ain Shams University

Professor / Lobna Mohamed El Nabil

Professor of Neurology and Psychiatry Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Before all, Thanks to Allah

I would like to express my profound gratitude to **Professor/ Fatma Kamel Mohamed,** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of medicine Ain Shams University, for her most valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to **Professor/ Ahmed Mohamed El Yasaky,** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine Ain Shams University, for his unique effort, considerable help, assistance and knowledge she offered me throughout the performance of this work.

My special thanks and deep obligation to **Professor/ Mohamed Reda Awad,** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Al Azhar University, for his continuous encouragement, supervision and kind care.

My deepest gratitude goes to **Professor** / **Heba Fawzy El Sheshtawy,** Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine Ain Shams University, for her great efforts, endless patience and devotion throughout this work.

I can't forget to thank with all appreciation **Professor / Lobna Mohamed El Nabil,** Professor of Neurology and Psychiatry, Faculty of Medicine, Ain Shams University, for her support and great help during the whole work.

Special thanks also goes to **Professor/ Dr. Manal Othman**. Professor of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine Ain Shams University, for her great contribution, knowledge, encouragement and support all through this work.

I can't forget to thank **Professor/ Dr. Hosam sakr** Professor of radiology, Faculty of Medicine Ain Shams University, for all the great efforts, kindness and assistance he offered me to accomplish this work.

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	
List of Figures	vi
Introduction	1
Aim of the Work	6
Review of Literature	7
Patients and Methods	115
Results	141
Discussion	231
Regarding the results of the fMRI case study:	244
Summary and conclusion	248
Conclusion	254
Recommendations	
References	
Arabic Summary	

List of Abbreviations

Abbrev. Full term

ADL : Activities of Daily LivingAMT : Active motor threshold

ARAT : Action research arm test

ASIA : American Spinal Injury Association Impairment

Scale

BDNF : Brain derived neurotrophic factor

CT : Computed Tomography scan

CM : Corticomotoneuronal

CNS : Central nervous system

CST : Corticospinal tract

EPT : Electric Perceptual Threshold

FCR : Flexor carpi radialis

FDI : First Dorsal Interosseous

FES: Functional electric stimulation

FIM : Functional independence measure

fMRI : Functional Magnetic Resonance Imaging

FTT : Finger Tapping Test

GABA : Gamma-aminobutyric acid

IQR : Inter-quartile Range

iSCI : Incomplete spinal cord injury

M1 : Primary Motor area

MAS : Modified Ashworth Scale

MEP : Motor Evoked Potential

MRI : Magnetic resonance imaging

List of Abbreviations (Cont.)

Abbrev. Full term

MRC : Medical Research Center

MT : Motor Threshold

NMDA : N-methyl-D-aspartate

NRT : Neuromuscular restorative therapy

NS : Not Significant

PMC: Pre-Motor Cortex

RCT: Randomized Controlled Trial

RMT : Resting Motor Threshold

rTMS : Repetitive Transcranial Magnetic Stimulation

S : Significant

S1 : Primary Somato-Sensory Area

SCI : Spinal cord injury

SHFT : Sollerman Hand function Test

SMA : Supplementary Motor Area

TFES: Therapeutic Functional Electric Stimulation

TMS : Transcranial magnetic stimulation

TrKB: Tyrosine kinase B

List of Tables

Table No.	Title Page No.
Table (1):	The relation of spinal Cord Segments to Vertebral Numbers
Table (2):	Spinal Cord and Pathology Associated with Mechanism of Injury
Table (3):	Sensory score 67
Table (4a):	Sensory pinprick examination of the face
(4b)	Sensory pinprick examination of the body 68
Table (5):	Some of the Maximum safe duration (s) of single trains of rTMS
Table (6):	Intervals for 10 trains of rTMS at less than 20 Hz
Table (7):	Demographic data of all patients in both groups:
Table (8):	Demographic data age of Group I and Group II
Table (9):	Demographic data of gender of Group I and Group II
Table (10):	Demographic data of duration since injury of Group I and Group II
Table (11):	Clinical data of group I at baseline 146
Table (12):	Clinical and Electrophysiological data for Group I at baseline:
Table (13):	Clinical data for Group II at baseline
Table (14):	Clinical and electrophysiological data for Group II at baseline

List of Tables (Cont.)

Table No.	Title	Page No.
Table (15):	Comparison between clinical data a and at week 10 among group I showe	
Table (16):	Comparison of clinical and electrophy data at baseline and at week 10 among	, ,
Table (17):	Comparison of clinical data at baseli week 12 among Group I	
Table (18):	Comparison of clinical and electrophy data at baseline and at week 12 among	
Table (19):	Comparison of clinical data at week among group I	
Table (20):	Comparison of clinical and electrophy data at week 10 and 12 among group I.	•
Table (21):	Comparison of clinical data at baseli week 10 among Group II showed:	
Table (22):	Comparison of clinical and electrophy data at baseline and at week 10 among	
Table (23):	Comparison of clinical data at baseli week 12 among Group II showed:	
Table (24):	Comparison of clinical and electrophy data baseline and at week 12 among Gr	
Table (25):	Comparison of clinical data at week among group II	
Table (26):	Comparison of clinical and electrophy data at week 10 and 12 among group II	
Table (27):	Comparison of clinical data of group II at baseline	•

List of Tables (Cont.)

Table No.	Title	Page No.
Table (28):	Comparison of clinical and electrophysic data of group I and group II at baseline	•
Table (29):	Comparison of clinical data of group group II at 10 weeks	
Table (30):	Comparison of clinical and electrophysic data of group I and group II at 10 weeks	_
Table (31):	Comparison of clinical data of group group II at 12weeks	
Table (32):	Comparison of clinical and electrophysic data of group I and group II at 12 weeks	•
Table (33):	Comparison of clinical and electrophysic data of group I and group II as regards change between 10 and 12 weeks	to the
Table (34):	Comparison of clinical and electrophysic data of group I and group II as regards to of change	the rate

List of Figures

Figure No.	Title Page	No.
Figure (1):	The Edwin Smith Papyrus	7
Figure (2):	A: spinal cord meninges. B: Nerve root anatomy in the vicinity of the spinal cord	13
Figure (3):	Arterial supply of the spinal cord	15
Figure (4):	The three levels of control of the motor system	18
Figure (5):	Motor cortical areas somatotopic organization in human and monkey	23
Figure (6):	Motor cortical areas somatotopic organization in human	24
Figure (7):	Transverse section of the spinal cord at the midcervical level	28
Figure (8):	The cortex directly controls motor neurons in the spinal cord through two descending pathways. A. The ventral corticospinal tract. B. The lateral corticospinal tract	30
Figure (9):	Medial and lateral descending pathways from the brain stem control different groups of neurons and different groups of muscles	35
Figure (10):	Schematic diagram of the spinal cord, showing the somatotopic organization of the ventral horn	36
Figure (11):	a- Connections of the propriospinal system	
	b- Schematic diagram of pathways transmitting corticospinal actions to cervical motoneurons	38
Figure (12):	Cylindrical grip	45
Figure (13):	A. Spherical grip. B. Hook grip	46
Figure (14):	(A) pad-to-pad prehension. (B) tip-to-tip prehension.	50

Figure (15):	(A) pad-to-side pad prehension) Fig.(B) The functional position of the hand	50
Figure (16):	(A) Cervical compression fracture.) (B) Diving accident with axial compression and flexion as the mechanism of injury	51
Figure (17):	Cervical spine hyperextension injury	53
Figure (18):	Pathophysiological mechanisms	62
Figure (19):	key points	68
Figure (20):	Key muscles for both Upper and Lower Limbs	69
Figure (21):	Drawing based on cervical spine x-ray, lateral view, in which the four lines are marked	77
Figure (22):	Graphical description of a functional MRI experiment: images from two behavioral conditions are subtracted to yield regions of brain activity. In this case, a hand clenching task was used to define the primary and supplementary motor control areas in the brain	81
Figure (23):	Principles of transcranial magnetic stimulation (TMS)	82
Figure (24):	A schematic representation of basic motor control mechanisms and of the motor unit and its components	88
Figure (25):	Following SCI, structural and functional plasticity within central nervous system both rostral and caudal to injury	97
Figure (26):	a, b, c describe the Central effects of FES	103
Figure (27):	ASIA impairment score for spinal cord injury	119
Figure (28):	The Action Research Arm test	121
Figure (29):	9 Peg board scale	124
Figure (30):	Modified Sollerman hand function test	127
Figure (31):	Hand grip dynamometer.	127

Figure (32):	MAGSTIM RAPID2 equipment for Transcranial magnetic stimulation
Figure (33):	Application of MEP over M1129
Figure (34):	Application of MEP over ABP129
Figure (35):	Application of MEP over M1 (C3 [/])130
Figure (36):	Surface EMG application of the thenars
Figure (37):	Surface EMG application of the long flexors 131
Figure (38):	Surface EMG application of the extensors
Figure (39):	Surface EMG assessing the Activity on maximum voluntary contraction at baseline
Figure (40):	Surface EMG assessing the Activity on maximum voluntary contraction after FES
Figure (41):	Cefar Physio4 Equipment
Figure (42):	The application of the flexor group of muscles on FES
Figure (43):	The application of the extensor digitorum muscle on FES
Figure (44):	The application of the triceps muscle on FES 136
Figure (45):	Manual training
Figure (46):	Writing training
Figure (47):	Demographic data of age of Group I and Group II 142
Figure (48):	Demographic data of gender of Group I and Group II
Figure (49):	Demographic data of duration since injury of Group I and Group II
Figure (50):	Clinical data of group I at baseline146
Figure (51):	Clinical data of group II at baseline
Figure (52):	Comparison between clinical data at baseline and at week 10 among group I

Figure (53):	Comparison of clinical data at baseline and at week 10 among Group I
Figure (54):	Comparison of Peg board scale at baseline and at week 10 among Group I
Figure (55):	Comparison of hand grip dynamometer at baseline and at week 10 among Group I
Figure (56):	Comparison of motor evoked potentials at baseline and at week 10 among group I
Figure (57):	Comparison of surface EMG "activity" of the thenars, long flexors and extensors at baseline and at week 10 among Group I
Figure (58):	Comparison of Electric perceptual threshold at baseline and at week 10 among group I
Figure (59):	Comparison of clinical data at baseline and at week 12 among Group I
Figure (60):	Comparison of clinical data at baseline and at week 12 among Group I
Figure (61):	Comparison of peg board scale at baseline and at week 12 among Group I
Figure (62):	Comparison of hand grip dynamometer at baseline and at week 12 among Group I
Figure (63):	Comparison of motor evoked potentials at baseline and at week 12 among Group I
Figure (64):	Comparison of surface EMG "activity" of the thenar, long flexor and extensor muscles at baseline and at week 12 among Group I
Figure (65):	Comparison of Electric perceptual threshold at baseline and at week 12 among Group I
Figure (66):	Comparison of clinical data at week 10 and 12 among group I
Figure (67):	Comparison of clinical data at week 10 and 12 among group I

Figure (68):	Comparison of peg board scale at week 10 and 12 among group I	172
Figure (69):	Comparison of hand grip dynamometer at week 10 and 12 among group I	173
Figure (70):	Comparison of motor evoked potentials at week 10 and 12 among group I	173
Figure (71):	Comparison of surface EMG "activity" of the thenar, long flexor and extensor muscles at week 10 and at week 12 among Group I	174
Figure (72):	Comparison of Electric perceptual threshold at week 10 and at week 12 among Group I	174
Figure (73):	Comparison of clinical data at baseline and at week 10 among Group II	176
Figure (74):	Comparison of clinical at baseline and at week 10 among Group II	179
Figure (75):	Comparison of peg board scale at baseline and 10 among group II	179
Figure (76):	Comparison of hand grip dynamometer at baseline and at week 10 among Group II	180
Figure (77):	Comparison of motor evoked potentials at baseline and at week 10 among group II	180
Figure (78):	Comparison of surface EMG "activity" of the thenars, long flexors and extensors at baseline and at week 10 among Group II	181
Figure (79):	Comparison of Electric perceptual threshold at baseline and at week 10 among group II	181
Figure (80):	Comparison of clinical data at baseline and at week 12 among Group II	183
Figure (81):	Comparison of clinical data at baseline and at week 12 among Group II	186
Figure (82):	Comparison of peg board scale at baseline and at week 12 among Group II	186

Figure (83):	Comparison of hand grip dynamometer at baseline and at week 12 among Group II
Figure (84):	Comparison of motor evoked potentials at baseline and at week 12 among Group II
Figure (85):	Comparison of surface EMG "activity" of the thenar, long flexor and extensor muscles at baseline and at week 12 among Group II
Figure (86):	Comparison of Electric perceptual threshold at baseline and at week 12 among Group II
Figure (87):	Comparison of clinical data at week 10 and 12 among group II
Figure (88):	Comparison of clinical data at week 10 and 12 among group II
Figure (89):	Comparison of peg board scale at week 10 and 12 among group II
Figure (90):	Comparison of hand grip dynamometer at week 10 and 12 among group II
Figure (91):	Comparison of motor evoked potentials at week 10 and 12 among group II
Figure (92):	Comparison of surface EMG "activity" of the thenar, long flexor and extensor muscles at week 10 and at week 12 among Group II
Figure (93):	Comparison of Electric perceptual threshold at week 10 and at week 12 among Group II
Figure (94):	Comparison of clinical data of group I and group II at baseline
Figure (95):	Comparison of clinical data of group I and group II at baseline
Figure (96):	Comparison of peg board scale of group I and group II at baseline
Figure (97):	Comparison of hand grip dynamometer of group I and group II at baseline