Role of Brain Natriuretic Peptide in Detection of Right Ventricular Dysfunction and Pulmonary Hypertension among Children with Chronic Lung Diseases

Thesis

Submitted for Partial Fulfillment of the Master Degree in Pediatrics

By

Nora Waheed Hassan Mohamed

M.B.B.ch (2009) Faculty of Medicine-Ain Shams University

Under supervision of Dr. Terez Boshra Kamel

Assistant Professor of Pediatrics Faculty of Medicine - Ain-Shams University

Dr. Waleed Mohamed Elguindy

Assistant Professor of Pediatrics Faculty of Medicine - Ain-Shams University

Dr. Enas Samir Nabih

Assistant Professor of Biochemistry Faculty of Medicine - Ain-Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Terez Boshra Kamel**, Assistant Professor of Pediatrics - Faculty of Medicine- Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Waleed Mohamed Elguindy**, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Enas Samir Mabih**, Assistant Professor of Biochemistry, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nora Waheed Hassan Mohamed

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	9
Abstract	ix
Introduction	2
Aim of the Work	4
Review of Literature	
Chronic Lung Diseases	5
Cardiac Manifestation and Dysfunction in Chr Pulmonary Disease	
Brain Natriuretic Peptide	43
Subjects and Methods	
Results	60
Discussion	
Summary9	
Conclusion	100
Recommendations	
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of pediatric interstitial	-
Table (2):	Summary of genes involved in the eti of childhood interstitial lung disease	ology
Table (3):	Morphological types of bronchiectasis.	
Table (4):	Symptoms of acute exacerbation in pa with bronchiectasis;	atient
Table (5):	The modified Medical Research Co (mMRC) scale for dyspnea grading	
Table (6):	Statistical comparison between PH non PH according demographic data	
Table (7):	Statistical comparison between PH nonPH according clinical data	
Table (8):	Statistical comparison between PH non PH according laboratory data	
Table (9):	Comparison between PH and non according BNP (pg/ml).	
Table (10):	Statistical Comparison between IPF bronchiectasis according BNP	
Table (11):	Comparison between PH and Non according to conventional Echo (M-rayariable	node)
Table (12):	Statistical comparison (mean±SD) of ventricular ecocardiographic fin between PH and non PH:	right dings
Table (13):	Statistical comparison of TDI fit (mean±SD) between PH and Nongroup.	nding PH

List of Cables (Cont...)

Table No.	Title	Page	No.
Table (14):	Correlation between BNP (pg/ml) and parameters, using Pearson correl coefficient of the study groups	ation	70
Table (15):	Diagnostic Performance of BNP (pg/n Discrimination of IPF and bronchiectas		72
Table (16):	Diagnostic Performance of BNP (pg/n Discrinination PH and non PH		73
Table (17):	Logistic regression analysis of fa affecting BNP (pg/ml)		74
Table (18):	Comparison between IPF bronchiectasis according PH		75
Table (19):	Statistical comparison between IPF bronchiectasis according PAP.		76

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Algorithm for the diagnosis of interstiti disease (ILD) presenting after 2 years of	-
Fig. (2):	BNP and NT-pro BNP	43
Fig. (3):	The Echocardiographic Vivid E9 machin	ne54
Fig. (4):	Boxplot between positive and negati according BNP.	
Fig. (5):	Boxplot between IPF and bronching according BNP.	
Fig. (6):	Scatter plot Negative correlation significant between BNP (pg/ml) and he	
Fig. (7):	Scatter plot Negative correlation significant between BNP (pg/ml) and cya	
Fig. (8):	Diagnostic Performance of IPF bronvchiectesisin Discrimination of (pg/ml).	BNP
Fig. (9):	Diagnostic Performance of PH and non Discrimination of BNP (pg/ml)	
Fig. (10):	Comparison between IPF and bronch	
Fig. (11):	Statistical comparison between IPI bronchiectasis according PAP.	

List of Abbreviations

Abb.	Full term
6MWT	.6-min walk test
	Annular peak velocity during late diastole.
	American College of Cardiology/American
	Heart Association.
ACE	.Angiotensin converting enzyme
	.Autosomal dominant.
AO	.Aortic bulb.
Aort VTI	.Time velocity integral foe aortic valve.
	.Time velocity integral for aortic valve.
	.Autosomal recessive.
ARDS	.Adult respiratory distress syndrome
	.Acceleration time/ pulmonary artery ejection
	time.
<i>BAL</i>	.Bronchoalveolar lavage
BNP	.Brain natriuretic peptide
<i>CAD</i>	.Coronary artery disease
<i>CBC</i>	$. Complete\ blood\ count.$
<i>CF</i>	.Cystic fibrosis.
chILD	.Children's interstitial lung disease
CI	.Cardiac index.
<i>CNP</i>	.Natriuretic peptide receptor-C.
<i>COPD</i>	.Chronic obstructive pulmonary disease
<i>CRP</i>	.C-reactive protein.
<i>CRT</i>	.Cardiac resynchronization therapy
<i>CRT</i>	.Cardiac resynchronization therapy.
<i>CTD</i>	.Connective tissue disease
<i>CTD</i>	.Connective tissue disease.
<i>CXRs</i>	$. Chest\ x$ -rays.
<i>DT</i>	.Deceleration time.
<i>E</i> '	Annular peak velocity during early diastole.

Abb.	Full term
E/A	Ratio between heights of early and late
	diastolic flow velocity peaks for both mitral
	and tricuspid valves.
<i>ECHO</i>	E cho cardiography.
<i>ECM</i>	Extra cellular matrix.
<i>EDV</i>	End diastolic volume.
<i>EF</i> %	$ Ejection\ fraction.$
ELISA	Enzyme-linked immunosorbent assay
eNO	Exhaled nitric oxide
<i>ESR</i>	Erythrocyte sedmintation rate.
<i>ESV</i>	End systolic volume.
<i>ESWSm</i>	end-systolic wall stress
<i>ESWSm</i>	Left ventricular meridional end-systolic wall
	stress.
<i>ET</i>	Ejection time
<i>ET-MV</i>	Ejection time mitral valve.
<i>ET-TV</i>	Ejection time tricuspid valve.
<i>FDA</i>	Food and Drug administration
FEV1	Forced expiratory volume in one second.
<i>FS</i> %	Fractional shortening.
FVC	Forced vital capacity
<i>HB</i>	Haemoglobin.
HIV	Human Immunodeficiency virus
<i>HP</i>	Hypersensitivity pneumonitis
<i>HP</i>	Hypersensitivity pneumonitis.
	High-resolution computed tomography
Ht	Height
Ht	_
	Immunoglobulin A
_	Immunoglobulin G
_	Idiopathic interstitial pneumonia

Abb.	Full term
<i>ILD</i>	Interstitial lung disease
<i>ILDs</i>	Chronic interstitial lung diseases.
	.Indexed right atrium area.
<i>IPF</i>	Interstitial pulmonary fibrosis.
<i>IV</i>	Administered intravenously.
<i>I.V</i>	Intravenously
<i>IVCT</i>	Isovolumetric contraction time
IVMA-MA	Mitral valve myocardial acceleration during isovolumetric contraction.
IVMA-MV	Mitral valve myocardial acceleration during isovolumic contraction.
IVMA-PA	Pulmonary artery
	Tricuspid valve myocardial acceleration
TVDT	during isovolumetric contractionIsovolumetric relaxation time
1VSD	Interventricular septum thickness at end- diastole.
IVSS	Interventricular septum thickness at end- systole.
<i>KL-6</i>	Krebs von den Lunge-6 antigen
<i>LA</i>	
<i>LTx</i>	Lung transplantation
LV	· -
	Left ventricular end diastolic dimension.
LVEDPs	LV end-diastolic pressures
	Left ventricular end systolic dimension.
	Left ventricular internal dimension at end- diastole.
LVIDs	Left ventricular internal dimension at end- systole.
LVM	Left ventricular mass.

Abb.	Full term
LVP Wd	Left ventricular posterior wall thickness at end-
	diastole.
LVP Ws	.Left ventricular posterior wall thickness at end-
	systole.
<i>LVRWT</i>	.Left ventricular relative wall thickness.
<i>LVWI</i>	.Left ventricular work index.
<i>MMP</i>	$. Matrix\ metalloprotein as es$
<i>mMRC</i>	.Modified Medical Research Council
<i>MPI</i>	.Myocardial performance index
<i>MPV</i>	.Mean platelet volume.
<i>MRI</i>	.Magnetic resonance imaging
<i>OLB</i>	.Open lung biopsy
<i>OLB</i>	.Open lung biopsy.
PA VTI	.Time velocity integral for pulmonary valve.
<i>PAH</i>	.Pulmonary arterial hypertension.
PaO_2	.Partial pressure of oxygen
<i>PAP</i>	.Pulmonary artery pressure.
PA-VTI	.Time velocity integral for pulmonary artery.
PDE5	.Phosphodiesterase type 5
PDE5	.Phosphodiesterase type 5 inhibitors.
<i>PPH</i>	.Persistent pulmonary hypertension.
<i>PVR</i>	.Peripheral vascular resistance.
<i>RHC</i>	.Right heart catheterization.
<i>ROC</i>	.Receiver operating characteristic curve.
RPEP/AT	.Right ventricle pre -ejection period/right
	$ventricle\ acceleration\ time.$
<i>R-sist</i>	.Right ventricular systolic time.
<i>RSV</i>	.Right ventricular stroke volume.
<i>RV MPI</i>	.Right ventricle myocardial performance index.
$RVS/D\ ratio$.Right ventricle systolic/diastolic ratio.
<i>RV WI</i>	.Right ventricular work index.

Abb.	Full term
RV-FAC	Right ventricle fractional area change.
RVPEP/RVET	.Right ventricule pre-ejection period/ right
	ventricle ejection time.
RVRWT	Right ventricular relative wall thickness.
<i>RVWL</i>	.Right ventricular work index.
S'	Annular peak velocity during systole.
SC	.Subcutaneously
<i>SD</i>	Standard deviation.
	Midwall Shortening Fraction
	Statistical program for social science.
SV	
<i>TAPSE</i>	Tricuspid annular plane systolic excursion.
	Tissue doppler imaging.
	Pulmonary ejection time.
-	Total leucocytic count.
	Transthoracic echocardiography
	.Uvulopalatopharyngoplasty
	. Video assisted thoracoscopy.
Wt	10

Abstract

Background: Pulmonary arterial hypertension (PAH) is an important determinant of morbidity, mortality and severity in chronic lung diseases children. Echocardiography is an indirect measure for PH with a limited accuracy compared to right heart catheterization and requires qualified physicians. BNP is the major hormone of the natriuretic peptide system, which is highly activated in different left and right heart diseases in the context of neurohumoral activation. In addition, in pulmonary arterial hypertension, BNP levels are elevated and seem to reflect clinical and hemodynamic status in this patient population. So, the aim of current study to detect the role of BNP in detection of pulmonary hypertension in CLDs children as objective, easy, repeatable available method.

Methods: Case-control study on thirty (30) children with Chronic lung diseases who recruited from the Pediatric chest clinic, Children hospital, Ain Shams University. We classified patients into PH and non-PH groups according to echocardiographic measurement of PAP >25mmHg.Serum BNP was assessed and correlated to echocardiographic data.

Results: Serum BNP showed a highly statistically significant difference between two groups. AS, mean level of BNP in PH group compared to non-PH group was (265.30±199.83 &40.01±23.01) respectively. Moreover, BNP significantly correlated with Echocardiographic parameters that reflect RT ventricular dysfunction. BNP cut-off to diagnose PH among studied patients was > 97.5 pg/ml with sensitivity of 95%, specificity of 98%, PPV equals 98%, NPV equals 94% and accuracy 98%.

Conclusion: BNP is an objective, repeatable, easy marker can be used to diagnose pulmonary hypertension in chronic lung diseases in children.

Keywords: B-type natriuretic peptide; pulmonary hypertension; chronic lung diseases; Paediatrics; ECHO.

INTRODUCTION

ediatric chronic lung diseases include many diseases such as: bronchiectasis, interstitial pulmonary fibrosis, cystic fibrosis, asthma, emphysema, bronchopulmonary dysplasia, sequestrated lung disease and bronchiolitis obliterans. They can be primary or secondary. They can be congenital or acquired (*Ibrahim et al.*, 2011).

They represent a heterogeneous group of many distinct clinicopathological entities. Their prevalence have increased in the past decade because of the more advanced and intensive respiratory support provided for compromised children (Rossi and Owens, 2005).

Children with chronic diseases of the respiratory system represent a large and even growing population, there is a need for an early and reliable diagnosis of complicating pulmonary hypertension (PH) leading to additional dyspnea and increased mortality (Hanno et al., 2006).

Incessant exposure to hypoxemia is one of the mechanisms besides others leading to sustained pulmonary vasoconstriction and narrowing of the pulmonary vasculature. Consequently, PH develops leading to right heart enlargement with ventricular hypertrophy, and impaired cardiac function, known as corpulmonale. Although PH potentially develops in every hypoxemic or chronic lung disease, there is still

uncertainty about the degree of a clinical relevant PH and about the time point when right heart catheterization should be initiated, as this is the method of choice to definitely diagnose PH (Weitzenblum, 2003).

The most accurate method for early diagnosis of PH is right heart catheterization, but it still dangerous and invasive technique, Echocardiography (ECHO) is an modality in the noninvasive assessment of PH and has been used to screen for the disease, determine right and left heart structure and function, and assess response to therapy in persons with PH (Galie et al., 2004).

Although limitations to its use in PH and PAH exist, several aspects of ECHO are particularly helpful in the assessment and long-term management of patients with PH (McGoon et al., 2004).

BNP is the major hormone of the natriuretic peptide system, which is highly activated in different left and right heart diseases in the context of neurohumoral activation. BNP is of special interest in this field as it is predominately secreted by the cardiac ventricles. In addition, in pulmonary arterial hypertension, BNP levels are elevated and seem to reflect clinical and hemodynamic status in this patient population. There are other studies that compare between BNP and catheterization in diagnosis of PH but did not compare data