

Frequency of Hyponatremia in Community Acquired Pneumonia and Its Relation to Severity and Gender among Children

Thesis Submitted for Partial Fulfillment of Master Degree in **Pediatrics**

By
Nada Tharwat Ezzat Deraz
M.B., B.Ch., (2011)

Under Supervision of

Professor /Dr. Magda Yehia El-Seify

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

Professor /Dr. Manal Mohamed Abdel-Aziz

Professor of Clinical Pathology
Faculty of Medicine, Ain Shams University

Assist, Professor /Dr. Terez Boshra Kamel

Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

بنتم النا المحتال المحت

وقَل رّبّ زِدنِي عِلْماً

صدق الله العظيم سورة طه آية (١١٤)

Acknowledgment

First thanks to **ALLAH**, the most merciful whom I relate any success I have reached and might reach in the future.

I wish to express my deepest gratitude to **Professor / Dr. Magda Yehia El Seify**, Professor of Pediatrics and head of pediatric pulmonology unit Faculty of Medicine, Ain Shams University for her kind supervision, sincere guidance and valuable suggestions.

I wish to express my deepest appreciation and thanks to **Professor / Dr. Manal Mohamed Abdel-Aziz** Professor of Clinical Pathology Faculty of Medicine, Ain Shams University for her kind help to continue the practical part of this work.

Also, I would like to thank Assist. Professor / Dr. Terez Boshra Kamel Assistant Professor of Pediatrics Faculty of Medicine, Ain Shams University who offered me a lot of her time and experience, she gave me guidance all through, support and advice.

I would like to express my deep appreciated to the patients of the pediatric hospital of Ain Shams University. Last but not least, my heartily thanks and deepest gratitude to my father my role model, my supportive mother, my husband and my brothers, for their support to finish this work.

Nada Tharwat Deraz

List of Contents

Content	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	vii
Introduction	1
Aim of the work	3
Review of Literature	4
Community Acquired Pneumonia In Pediatrics	4
Electrolytes and Hyponatremia	32
Patients and Methods	52
Results	58
Discussion	97
Summary and Conclusion	107
Recommendations	111
References	112
Arabic Summary	۲

List of Abbreviations

ABG	Arterial Blood Gases
ACIP	Advisory Committee on Immunization Practice
ANP	Atrial Natriuretic peptide
ARI	Acute respiratory infection
AVP	Arginine vasopressin
BTS	British Thoracic Society
BUN	Blood Urea Nitrogen
C.T.	Computed Tomography
CAP	Community Acquired Pneumonia
CF	Cystic fibrosis
CNS	Central nervous system
CRP	C-reactive protein
D.D	Differential diagnosis
ECF	Extracellular fluid compartment
ESR	Erythrocyte Sedimentation Rate
ETS	Environmental Tobacco Smoke
Fio ₂	Fraction of Inspired Oxygen
HAP	Hospital-Acquired Pneumonia
Hib	Haemophilus influenza type B bacteria
HIV	Human Immune Deficiency Virus
HN	Hyponatremia
HRCT	High resolution CT
ICF	Intracellular fluid compartment
IDSA/ATS	Infectious Disease Society of America/ American
	Thoracic Society
IMCI	Integrated management of childhood illness
K ⁺	Potassium
LRTI	Lower Respiratory Tract Infections

List of Abbreviations (Cont.)

MPV	Metapneumovirus
Na ⁺⁺	Sodium
NCIRD	National Center for Immunization and Respiratory
	Diseases
PaCo ₂	Partial pressure of carbon dioxide
PCR	Polymerase Chain Reaction
PEM	Protein energy malnutrition
PICU	Pediatric intensive care unit
RR	Respiratory rate
RSV	Respiratory syncytial virus
SaO ₂	Oxygen Saturation
SARS	Severe acute respiratory syndrome
SGOT	Serum Glutamic Oxaloacetic Transaminase
SGPT	Serum Glutamate Pyruvate Transaminase
SIADH	Syndrome of Inappropriate Anti Diuretic
	Hormone
TBW	Total body water
WHO	World Health Organization

List of Tables

Table	Title	Page
1	Risk Factors of Pneumonia.	6
2	Criteria for Respiratory Distress in Children with	13
	Pneumonia.	
3	Clinical Features of CAP according to etiology.	14
4	Complications of Pneumonia.	15
5	Severity assessment of CAP.	24
6	Indications for hospital admission in CAP.	25
7	Indication for transfer to intensive care unit.	26
8	Causes of Hyponatremia.	39
9	Common known causes of the Syndrome of	42
	Inappropriate Antidiuresis.	
10	Diagnosis of SIADH.	43
11	Distribution of the studied cases of CAP	58
	according to demographic data.	
12	Shows exposure to ETS, PICU admission and	60
	mortality in the studied children with CAP.	
13	Distribution of the clinical manifestations in the	61
	studied cases.	
14	Distribution of anthropometric measurement	62
	(weight and height) and vital signs (heart rate and	
	respiratory rate) in the studied children.	
15	Distribution of the studied cases according to the	63
	clinical severity of CAP.	
16	CXR findings of the study cases.	63
17	Laboratory investigations of the studied cases.	64
18	The result of serum sodium (meq/l) in the studied	64
	children with CAP.	

Table	Title	Page
19	Statistical comparison of the demographic data in relation to serum Na++ in the studied cases.	65
20	Statistical comparison of the demographic data in relation to serum Na++ in comparison between patients with normal serum Na+ and hyponatremia	66
21	Statistical comparison between Na++ level as regards ETS, PICU and mortality.	67
22	Statistical comparison between patients with normal serum Na+ and those with hyponatremia. as regards ETS exposure, PICU and mortality	67
23	Statistical comparison between clinical manifestation and Na++ level in the studied children with CAP.	68
24	Statistical comparison between patients with normal serum Na+ and those with hyponatremia as regards clinical manifestation.	69
25	Statistical comparison between clinical signs and serum Na++ level in the studied cases.	70
26	Statistical comparison between patients with normal serum Na+ and those with hyponatremia as regards clinical signs.	71
27	Statistical comparison between serum Na++ level and laboratory investigations in the studied cases.	72
28	Statistical comparison between serum Na++ level and laboratory investigations in the studied cases.	73

Table	Title	Page
29	Statistical comparison between the demographic data and hyponatremia level (mild, moderate & severe).	75
30	Statistical Comparison between children with positive ETS, PICU admission and mortality in relation to hyponatremia level (mild, moderate & severe).	76
31	Statistical comparison between clinical manifestations and the degree of hyponatremia (mild, moderate & severe).	78
32	Statistical comparison between clinical signs and degree of hyponatremia level (mild, moderate & severe) in the studied cases.	80
33	Statistical comparison between laboratory investigations and degree of hyponatremia (mild, moderate & severe) in the studied children.	81
34	Statistical comparison between demographic data of the studied children and degree of pneumonia severity.	82
35	Statistical comparison between ETS, PICU and mortality in relationship to the severity of pneumonia.	83
36	Statistical comparison between clinical manifestations in the studied cases and severity of pneumonia.	84
37	Statistical comparison between clinical signs and severity of pneumonia in the studied cases.	86
38	Statistical comparison between laboratory	87

Table	Title	Page
	investigations and pneumonia severity.	
39	Statistical comparison between male and female	89
	children with CAP as regard ETS, PICU and	
	mortality.	
40	Statistical comparison between male and female	90
	with CAP as regard clinical manifestations.	
41	Statistical comparison between male and female	91
	with CAP as regard clinical signs.	
42	Statistical comparison between male and female	92
	with CAP as regard laboratory investigations.	
43	Correlation Study between Na+ level and the	93
	clinical parameters in the study group Using	
	Pearson Correlation Coefficient Test.	
44	Correlation Study between Na+ level and the	95
	laboratory data in the study group Using Pearson	
	Correlation Coefficient Test.	

List of Figures

Fig.	Title	Page
1	Showing radiological findings of lobar	8
	pneumonia.	
2	Showing radiological findings of Broncho-	8
	pneumonia.	
3	Showing radiological findings of interstitial	9
	pneumonia.	
4	HRCT showing the lower lobes of a patient with	22
	interstitial pneumonia.	
5	Winters diagram with the subdivision of total	32
	body water in relation to age.	
6	Effects of Hyponatremia on the Brain and	44
	Adaptive Responses.	
7	Distribution of the studied cases according to	59
	gender.	
8	Distribution of the studied cases according to	59
	social class.	
9	Distribution of the studied cases according to	60
	birth order.	
10	Shows the percentage of exposure to ETS, PICU	61
	admission and mortality among studied children	
	with CAP.	
11	Distribution of clinical manifestations in the	62
	studied cases.	
12	CXR findings of the studied cases.	63
13	Serum Na++ level distribution in the studied	65
	cases.	
14	Comparison between Na ⁺⁺ level as regard CRP	74
	and AST.	

Fig.	Title	Page
15	Comparison between hyponatremia level (mild,	74
	moderate & severe) in Na ⁺ level as regard passive	
	smoking, ICU and mortality.	
16	Comparison between hyponatremia level (mild,	79
	moderate & severe) as regard fever grading.	
17	Comparison between hyponatremia level (mild,	79
	moderate & severe) as regard duration of hospital	
	stay (days).	
18	Comparison between mild pneumonia and severe	85
	pneumonia as regard fever grading.	
19	Comparison between mild pneumonia and severe	88
	pneumonia as regard the results of laboratory	
	data.	
20	Correlation between serum Na ⁺ and duration of	94
	hospital stay in(days) in children with CAP.	
21	Correlation between serum Na ⁺ and neutrophils	96
	count in children with CAP.	

Introduction

Community-acquired pneumonia (CAP) is a major cause of morbidity and mortality in young children, even in industrialized countries (**De Schutter et al., 2014**). It is still the leading cause of childhood mortality globally (**Liu et al., 2012**).

WHO has set definitions for severe pneumonia (cough and difficult breathing with lower chest wall indrawing) and for very severe pneumonia (cough and difficult breathing with danger signs). These definitions are useful as they are applied at the community level for guiding the case management and referral of children to a hospital, hence are purposefully highly sensitive and poorly specific for truly life threatening disease (**Lanata et al., 2004**).

Hyponatremia is defined as a plasma sodium concentration of less than 135 mmol/L, it is a very common disorder, occurring in hospitalized patients. Hyponatremia often results from an increase in circulating arginine vasopressin (AVP) levels and/or increased renal sensitivity to AVP, combined with an increased intake of free water. Hyponatremia is subdivided into three groups, depending on clinical history and volume status: hypovolemic, euvolemic, and hypervolemic hyponatremia (Gopinath et al., 2013).

management of volume status as well sodium levels is essential. normalizing serum Sodium concentration is the major determinant of plasma osmolality; hyponatremia usually indicates therefore. a low osmolality. Low plasma osmolality rather than hyponatremia, per se, is the primary cause of the symptoms of hyponatremia. Hyponatremia not accompanied by hypo-osmolality does not

Introduction

cause signs or symptoms and does not require specific treatment (Robertson, 2012).

Hyponatraemia is considered a common laboratory finding in children with community-acquired pneumonia (CAP), which can be defined clinically as the presence of signs and symptoms of pneumonia in a previously healthy child due to an infection which has been acquired outside hospital (**Don et al., 2008**). Few studies explored the correlation of HN and pneumonia in children. Based on the published studies, the severity of CAP and HN are associated with the need of hospitalization, the presence of prolonged and high fever, and elevated serum non-specific inflammatory markers, such as serum C-reactive protein (CRP) and serum procalcitonin (**Don et al., 2008 & Sakellaropoulou et al., 2010**).

Moreover, lower respiratory tract infections (LRIs), including acute lower respiratory tract infections, pneumonia, atypical pneumonia, bronchitis, bronchiolitis, and severe acute respiratory syndrome (SARS), continue to threaten the health of children worldwide and especially in developing countries, where poor nutrition prevails and access to health care is scarce (Eboriadou et al., 2008).

Aim of the Work

The purpose of this study is to identify the frequency of hyponatremia in children with community acquired pneumonia (CAP), to find predictive tools in order to classify the severity and outcome of CAP and also to explore possible differences of clinical importance between the two sexes.