

Targeted Respiratory Tract Drug Delivery Systems

A Thesis Submitted for Partial Fulfillment of the Requirements for the Master Degree of Pharmaceutical Sciences (Pharmaceutics)

By

Roxane Abdel Gawad Moussa

Bachelor of pharmaceutical sciences, June 2008, Ain Shams University Demonstrator, department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy, Ain Shams University

Under the supervision of:

Prof. Dr. Nahed Daoud Mortada

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Gehanne Abd El-Samie Awad

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Dr. Rihab Osman Ahmed

Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy
Faculty of Pharmacy
Ain Shams University
Cairo
2016

Acknowledgements

First of all thanks to GOD, by the grace of whom, this work was successfully achieved.

I would like to express my hearty appreciation to *Prof. Or Nahed Daoud Mortada*, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her instructive supervision and encouragement throughout the work.

I am greatly thankful to *Prof. Or Gehanne Abd El-Samie Awad*, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her fruitful supervision.

No words could ever express my deep thanks to *Dr Rihab Osman Ahmed*, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for the great help and effort she devoted for the completion of this thesis.

Deep thanks to *Prof. Dr. Adel Bekeer*, Professor of Pathology, Faculty of Medicine, Cairo University, for helping me doing the microscopic examination of this thesis.

I would like to express my deep thanks to my *Colleagues* in the Department of Pharmaceutics and Industrial Pharmacy for their support.

I am profoundly grateful to all the members of my family (my father, my mother, my sisters: Rihame, Rola, Rana and their families) who supported and helped me throughout the work period. Extending gratitude to my dear husband (Ahmed) and his family, my son (Eyad) and my daughter (Erajouette) for their sincere support and encouragement.

Roxane Abdel Gawad Moussa 2016

List of Contents

Item	Page
List of Abbreviations.	VI
List of Tables.	IX
List of Figures.	XIII
Abstract.	XX
General Introduction.	1
Scope of Work.	12
Chapter I: Preparation and Characterization of Fast Dissolvin MTK Loaded Spray Dried Agglomerated Microparticles.	ng
• Introduction.	14
• Experimental.	
(1) Materials.	22
(2) Equipment.	22
(3) Methods.	23
(3.1) Preparation of soft agglomerates (SA) of MTK loaded Microparticles.	23
(3.2) Calibration curves of MTK in different media.	25
(3.3) Characterization of SDPK formulae.	26
(3.3.1) Spray drying yield evaluation.	26
(3.3.2) Determination of MTK association efficiency and loading in SDPK formulae.	26

(3.3.3) Determination of the Powder flow properties.	27
(3.3.4) Determination of particle size (PS) and calculation of mass median aerodynamic diameter (MMAD) .	29
(3.3.5) Particle morphology by scanning electron microscopy (SEM) .	30
(3.3.6) Deagglomeration study.	30
(3.3.7) Thermogravimetric analysis (TGA).	30
(3.3.8) X-ray powder diffraction (XRPD).	31
(3.3.9) Differential scanning calorimetry (DSC) .	31
(3.3.10) Fourier transform infrared spectroscopy (FT-IR) .	32
(3.3.11) <i>In-vitro</i> pulmonary deposition.	32
(3.3.12) <i>In-vitro</i> release profile of MTK from the MTK loaded SDPK formulae.	35
(3.3.13) Stability study.	35
(3.4) Statistical analysis.	35
(4) Results and discussion.	36
• Conclusions.	79
Chapter II: Preparation and Characterization of Agglomerated	
Spray Dried MTK Loaded PLGA Nano-In-Microparticles.	
• Introduction.	81
• Experimental.	
(1) Materials.	87
(2) Equipment.	87

(3) Methods.	88
(3.1) Characterization of MTK loaded PLGA-NPs.	92
(3.1.1) Determination of MTK loaded PLGA-NPs colloidal Properties.	92
(3.1.2) Determination of MTK EE in PLGA-NPs.	92
(3.2) Characterization of MTK loaded PLGA nano-in-MPs.	93
(3.2.1) Spray drying yield evaluation of MTK loaded PLGA nano-in-MPs.	93
(3.2.2) Determination of the powder flow properties of MTK loaded PLGA nano-in-MPs.	94
(3.2.3) Determination of PS and mass median aerodynamic diameter (MMAD) of MTK loaded PLGA nano-in-MPs.	94
(3.2.4) Determination of association efficiency (AE), MTK theoretical and actual loading capacities of MTK in MTK loaded PLGA nano-in-MPs.	94
(3.2.5) NPs recovery from MTK loaded PLGA nano-in-MPs.	95
(3.2.6) <i>In-vitro</i> pulmonary deposition of MTK loaded PLGA nano-in-MPs.	95
(3.2.7) Thermogravimetric analysis (TGA) of MTK loaded PLGA nanoin-MPs.	95
(3.2.8) Scanning electron microscopy (SEM) of some MTK loaded PLGA nano-in-MPs.	96
(3.2.9) Deagglomeration study of the selected MTK loaded PLGA nanoin-MPs SA.	96
(3.2.10) Transmission electron microscope (TEM) of the selected MTK	96

loaded PLGA nano-in-MPs SA.	
(3.2.11) <i>In-vitro</i> drug release from the selected MTK loaded PLGA nano-in-MPs SA.	97
(3.2.12) X-ray powder diffraction (XRPD) of the selected MTK loaded PLGA nano-in-MPs SA.	97
(3.2.13) Differential scanning calorimetry (DSC) of the selected MTK loaded PLGA nano-in-MPs SA.	97
(3.2.14) Fourier transform infrared spectroscopy (FT-IR) of the selected MTK loaded PLGA nano-in-MPs SA.	98
(3.2.15) Stability Study of the selected MTK loaded PLGA nano-in-MPs SA.	98
(3.3) Statistical analysis.	98
(4) Results and discussion.	99
• Conclusions.	143
Chapter III: <i>In-Vivo</i> Pharmacologic Efficacy of MTK loaded Sp. Dried Powders Formulae.	ray
• Introduction.	145
• Experimental.	
(1) Materials.	152
(2) Animals.	152
(3) Equipment.	153
(4) Methods.	153

List of Contents

Arabic summary.

(4.1) Pharmacodynamic study.		
(4.1.1) Animal handling.	154	
(4.1.2) Rats sensitization protocol.	154	
(4.1.3) Study design.	157	
(4.1.4) Animal dosing and drug administration.	158	
(4.1.5) Pharmacodynamic study.	160	
(4.1.5.1) BAL leukocytes count and cells differentials.	160	
(4.1.5.2) Histopathological examination.	160	
(5) Results and discussion.	161	
• Conclusions.	184	
Summary.	185	
References.		
Appendix I.		
Ethical committee approval for in-vivo studies.		
Appendix II.		
Published paper.		

List of Abbreviations

AE	Association efficiency.
BAL	Bronchoalveolar lavage
CCI	Carr's compressibility index.
DPPC	Dipalmitoyl phosphatidyl choline.
DSC	Differential scanning calorimetry.
EA	Ethyl acetate.
ED	Emitted dose.
EE	Entrapment efficiency.
EI	Effective inhalation index.
ELF	Epithelial lining fluid.
FPD	Fine particle dose
FPF	Fine particle fraction.
FT-IR	Fourier transform- infrared.
Gp	Group.
h	Hours.
HR	Hausner's ratio.
H&E	Hematoxylin & Eosin.
IL	Interleukin.

IN	Intranasal.
IR	Infrared.
L	Leucine.
M	Mannitol.
min	Minutes.
MMAD	Mass median aerodynamic diameter.
MPs	Microparticles.
M-SA	Mannitol based soft agglomerates.
MTK	montelukast sodium.
NPs	Nanoparticles.
OVA	Ovalbumin.
OVA-SA	Ovalbumin based soft agglomerates.
PB	Phosphate buffer.
PBS	Phosphate buffer saline.
PLGA	Poly lactic glycolic acid.
PS	Particle size.
PVA	Polyvinyl alcohol.
S	Lecithin.
SA	Soft agglomerates.

sd	Standard deviation.
SD	Spray dried.
SDP	Spray dried powder.
SDPK	Montelukast loaded spray dried powder.
SE	Standard error.
SEM	Scanning electron microscopy.
TDI	Toluene di-isocyanate.
TEM	Transmission electron microscopy.
TSI	Twin stage impinger.
UV	Ultraviolet.
XRPD	X-ray powder diffraction.
ζ	Zeta potential.
θ	Angle of repose.
$\lambda_{ m max}$	Wavelength of maximum absorbance.

List of Tables

No.	Table title	Page
1	Composition of different SDPK formulae.	25
2	Yield value of SDPK formulae.	40
3	MTK association efficiency, theoretical and actual loading capacities of SDPK formulae.	43
4	Flow parameters of SDPK formulae.	45
5	Particle size and particle size distribution of SDPK formulae.	46
6	Mass median aerodynamic diameter of SDPK formulae.	48
7	Effect of different dispersive pressures on the particle size of selected M-SA and OVA-SA of SDPK formulae.	53
8	Percent moisture content in selected SDPK formulae.	55
9	<i>In-vitro</i> deposition and calculated inhalation indices of M-SA and OVA-SA of SDPK formulae.	72
10	Cumulative percent of MTK released from the selected M-SA (M4) and OVA-SA (O4) of SDPK formulae, compared to MTK powder in PB (pH 7.4) at 37°C.	76
11	Effect of storage on the <i>in-vitro</i> pulmonary deposition and drug association efficiency of M-SA of SDPK (M4).	78

12	Formulae codes based on the percent of PVA in the external aqueous phase and the type of matrix former used.	90
13	Composition of the prepared nano-in-MPs SA for spray drying.	91
14	The optimization parameters used in the preparation of MTK loaded PLGA nano-in-MPs.	92
15	Particle size & PDI value of MTK loaded PLGA-NPs prior to spray drying.	101
16	Entrapment efficiency of MTK in PLGA-NPs.	104
17	Yield value of SDP MTK loaded PLGA nano-in-MPs.	106
18	Flow parameters of SDP MTK loaded PLGA nano-in-MPs.	109
19	Particle size and MMAD of spray dried MTK loaded PLGA nano-in-MPs.	112
20	MTK association efficiency, theoretical and actual loading capacities of SDP MTK loaded PLGA nano-in-MPs.	115
21	Particle size of MTK loaded PLGA nano-in-MPs formulae after incubation in PB at various time intervals.	117
22	<i>In-vitro</i> pulmonary deposition and inhalation indices of SDP MTK loaded PLGA nano-in-MPs.	121

23	Percent moisture content in selected SDP MTK loaded PLGA nano-in-MPs.	123
24	Powder yield and flow parameters of MTK loaded PLGA nano-in-MPs SA.	127
25	Comparative particle size of MTK loaded PLGA-NPs and nano-in-MPs SA.	127
26	MTK entrapment efficiency, association efficiency, actual and theoretical loading capacities of MTK loaded PLGA nano-in-MPs SA.	129
27	Particle size of the recovered NPs from MTK loaded PLGA nano-in-MPs SA at different time intervals	130
28	<i>In-vitro</i> pulmonary deposition and inhalation indices of the selected MTK loaded PLGA nano-in-MPs SA (P11).	131
29	The effect of different dispersive pressures on the particle size of the selected MKT loaded PLGA nano-in-MPs SA (P11).	133
30	MTK cumulative percent released from the selected MTK loaded PLGA nano-in-MPs SA (P11) in PB (pH 7.4) at 37°C.	136
31	Effect of storage on the <i>in-vitro</i> pulmonary deposition and drug association efficiency of MTK loaded PLGA nano-in-MPs SA (P11).	141

32	Composition and characteristics of the optimized formulae selected for <i>in-vivo</i> study.	154
33	Pharmacodynamic study design.	157
34	Percentage of dose delivered from formulae M4 and P11 after 1, 3 and 5 puffs.	161
35	BAL total leukocytes count and cells differentials of groups I, II, III & IV on days 1 and 2 following drug administration.	162
36	BAL total leukocytes count and cells differentials of groups I, II & V for fourteen days following drug administration.	169