Nutritional Status in relation to Adequacy of Dialysis in Hemodialysis Patients; a multicenter Study in Egypt

Thesis

Submitted For Partial Fulfillment of Master Degree In Nephrology

By

AmiraHussienMoussaAbd El-Moteleb

(M.B,B.ch)

Under Supervision Of

Prof. Hany Ali Refaat Ali

Professor of Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Dr.Waleed Ahmed Bichari Ali

Assistant professorof Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Dr. Sherry RedaKamel Attallah

Assistant professorof Internal Medicine and Nephrology Faculty of Medicine- Ain Shams University

Ain Shams University 2015

حالة التغذية وعلاقتها بكفاءة الاستصفاء الدموي لمرضى الغسيل الكلوي دراسة في مراكز متعددة في مصر

رسالة توطئة للحصول على درجة الماجستير في الكلى

مقدمة من

أميرة حسين موسى عبد المطلب بكالوريوس الطب والجراحة - كلية طب قناة السويس

تحت إشراف أ.د/هاني علي رفعت علي استاذ الباطنة العامة والكلى كلية الطب - جامعة عين شمس

د/وليد أحمد بشاري علي أستاذ مساعد الباطنة العامة والكلى كلية الطب - جامعة عين شمس

د/شيري رضا كامل عطا الله أستاذ مساعد الباطنة العامة والكلى كلية الطب – جامعة عين شمس

> كلي الطب جامعة عين شمس 2015

سورة البقرة الآية: ٣٢

First of all, I feel thankful to **Allah** for giving me the guidance and internal support in all my life and in every step that I made until this study was completed.

I would like to express my appreciation to **Prof. Dr.Hany Ali Refaat Ali,** Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his valuable ideas, stimulating discussions, enlightening guidance, and keen supervision that he has kindly given me throughout this research, which was instrumental in achieving the completion of the study.

I would like to express my heartful thanks and deep gratitude to **Dr. Waleed Ahmed Bichari Ali,** Assistant professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for his unforgettable help, advice, wise guidance, and fruitful assistance during the course of this research.

A lot of thanks are extended to **Dr. Sherry RedaKamel Attallah**, Assistant professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for her effort, constant encouragement and advice whenever needed.

So My

Mother & Father

For their warm affection, patience, encouragement, and for always being there when I needed them

So

My husband **Eng. Eisa Nassar** who always support me, my Children**Somia Mahmoud** who fill my life with joy

Contents

S	Subjects Pa	
•	List of Abbreviations	T
•	List of Tables	
•	List of Figures	
•	Introduction	
•	Aim of the work	
•	Review of literature	
	- Chapter 1: Malnutrition in Hemodialysi	is5
	- Chapter 2: Efficiency of Hemodialysis	50
•	Patients and Methods	80
•	Results	84
•	Discussion	97
•	Summary and conclusion	113
•	Recommendations	115
•	References	116
•	Arabic summery	

List of Abbreviations

ADPKD : Autosomal dominant polycystic kidney disease

25 (OH) D3 : 25 Hydroxycholecalciferol

BIA : Bio impedance analysis

BMI : Body Mass Index

BSA : Body surface area

BUN : Blood Urea Nitrogen

CKD : Chronic Kidney Disease

CRI : Chronic renal impairment

CRP : C-reactive protein

CVD : Cardiovascular Disease

DEXA : Dual-Energy X-ray Absorptiometry

DM : Diabetes Mellitus

DOPPS : Dialysis Outcomes and Practice Patterns

Study

EBPG : European Best Practice Guidelines

 eKt/V_{urea} : Equilibrated eKt/V_{urea}

ER : Extraction ratio

ESKD : End Stage Kidney Disease

ESR : Erythrocyte Sedimentation Rate

ESRD : End Stage Renal Disease

G : Urea generation rate

GFR : Glomerular filtration rate

GN : Glomerulonephritis

Hb% Hemoglobin

HD : Hemodialysis

HTN : Hypertension

ID : Interdialytic

IDPN : Intradialytic parenteral nutrition

IL-6 : interleukin-6

K/DOQI : Kidney Disease/Dialysis Outcomes and

Quality Initiative

K0A : Dialyzer mass transfer area coefficient

Kd : Dialyser clearance

Kr : Kidney clearance

Kt/V : kinetic modeling of urea

LBM: Lean Body Mass

LDL : Low Dinesty Lipoprotein

MIA: Malnutrition, Inflammation, and

syndrome Atherosclerosis syndrome

MS : Malnutrition score

NCDS : National Cooperative Dialysis Study

NHANES II: National Health and Nutrition Examination

Surveys

NKF : National Kidney Foundation

nPCR : Normalized protein catabolic rate

List of Abbreviations

PNA : protein equivalent of nitrogen appearance

Qb_w : blood water flow

Qf : Urea clearance from ultrafiltration

SGA : Subjective Global Assessment

spKt/V : Single pool kinetic modeling of urea

Td : Time on dialysis

TPN: Total Prenteral Nutrition

Tr : Time interval between two dialysis

procedures

URR : Urea reduction ratio

V : Volume of solute distribution

 V_{urea} : Urea volume

List of Tables

Table No	Title	Page
Table (1)	Subjective global assessment score.	14
Table (2)	Percentiles of triceps skin fold	16
	thickness.	
Table (3)	Descriptive data of the 150 patients.	84
Table (4)	Descriptive laboratory data of the	86
	included patients.	
Table (5)	Descriptive data as regard nutritional	88
	status and adequacy of dialysis of the	
	studied population.	
Table (6)	Correlation between kt/v and both	90
	nutritional status& biochemical	
	parameters.	
Table (7)	Comparison between different Kt/V	92
	categories as regards nutritional status	
	and biochemical parameters.	
Table (8)	Comparison between SGA categories	94
	of the studied population as regard	
	biochemical parameters, BMI &	
	nPCR.	
Table (9)	Comparison of different nPCR	95
	categories of studied population as	
	regard biochemical parameters, BMI	
	& SGA.	

List of Figures

Figure No	Title	Page
Fig. (1)	Causes of ESRD in the studied population.	85
Fig. (2)	Descriptive laboratory data of the included patients	87
Fig. (3)	Description of SGA score, n PCR, & Kt/v categories of the studied population.	89
Fig. (4)	Correlation between adequacy of dialysis (spkt/v) & protein intake (nPCR) of studied patients.	91
Fig. (5)	Different Kt/V categories of the studied population in relation to their mean BMI.	93
Fig. (6)	Different Kt/V categories of the studied patients in relation to their nPCR.	93
Fig. (7)	Different nPCR categories of studied population in relation to their mean BMI.	96
Fig. (8)	Different nPCR categories of studied population in relation to their SGA score.	96

Introduction

Regardless of the obvious technological progress in the development of dialysis procedures, the adequacy of hemodialysis (HD) and nourishment are important determinants of the quality of life and have a direct impact on morbidity and mortality of patients who are being treated with chronic HD (*Nunes et al.*, 2008).

It is estimated that improvement of nutrition might postpone the progression and lessen expected complications in patients who suffer from severe renal insufficiency (*Chazot et al.*, 2001).

The concept of quality, adequacy or appropriateness of HD, which were introduced in the 1970s, implies dialysis which enables patients to have a normal quality of life, as well as solid clinical tolerance with minimal problems during the dialysis and inter-dialysis periods. The most widely accepted model for objective quantification of HD efficiency is the kinetic model of urea (Kt/V). This defines all necessary parameters of dialysis, keeping in mind the high levels of protein catabolism and elimination of urea (Kooman et al., 2007).

Since the time when Quinan (1826) and Christison (1829) substantiated that an increased concentration of urea kidney characterizes suffer patients who from insufficiency, and up to the time when HD was introduced as a method of treatment, there have been attempts to quantify the implemented therapeutic procedure. Dialysis is an adequate medical treatment if it enables patients to achieve full rehabilitation. That includes satisfactory nutritional intake, normalization of hypertension and correction of anemia, as well as lack of symptoms of uremic neuropathy. In the early seventies of the last century, Gotch and Sargent and later on Daurgirdas and Schneditz quantified the dialysis dose through a formula, based on a mathematical model and taking into account objective laboratory parameter (Fouque et al., 2007).

The K-DOQI recommends that the Kt/V value should not be lower than 1.25. Causes of malnutrition might be sought in the very nature of the kidney disease, in some adjunct co-morbid disease lack of appetite, inappropriate diet, low dose of dialysis, deficits of glucose and amino acids during HD, acidosis and the occurrence of chronic infections (*Stolici et al.*, 2008).

By improving the effects of dialysis, removing uremic toxins and increasing the HD adequacy index, we may stimulate appetite and thus contribute to enhancing the intake of nutritious elements. Nutritive status is estimated on the basis of biochemical parameters, but the reference values are arguable, because all available evidence indicates that there is no consensus about the normal state

Yang et al., confirmed that an increase of protein level improves the Kt/V index as these two parameters were significantly correlated and are important for the quality of life of HD patient (*Young Do et al.*, 2007). Increase providing sufficient nutritional input micronutrients, protein and energy matter is the right measure of a good diet regime in patients on HD (*Termoshuizen et al.*, 2004).

Aim of the work

The aim of this study is to assess nutritional status in relation to adequacy of dialysis in hemodialysis patient in multiple centers of hemodialysis in Egypt.