Inferior Turbinate Reduction Surgery by partial inferior turbinectomy versus radiofrequency turbinectomy

Meta analysis

Presented By

Sarah Ahmed El-sayed Afifi

M.B.B.Ch., Ain shams university. On partial fulfillment of master degree in otorhinolaryngology *Supervised By*

Prof. Dr/ Mohamed Magdy Samir

Professor of otorhinolaryngology
Faculty of medicine Ain Shams University

Prof. Dr/ Ahmed Adly Mohamed

Professor of otorhinolaryngology
Faculty of medicine Ain Shams University

Assistant Prof. Dr/ Mohammed Saad hasaballah

Assistant Prof. of otorhinolaryngology Faculty of medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2015

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Magdy Samir**, Professor of Otolaryngology, Head L Neck Surgery for his meticulous supervision, kind guidance, valuable instructions and generous help.

I am deeply thankful to **Prof. Dr. Ahmed Adly Mohamed**Professor of Otolaryngology, Head & Neck surgery, for his great help,
outstanding support, active participation and guidance.

Special thanks are to **Dr Moahmed Saad Hasaballah**Assistant Professor of Otolaryngology, Head & Neck Surgery for his sincere efforts and fruitful encouragement.

My thanks and appreciations are to my family, I owe my utmost gratitude for all their support and understanding.

Finally I dedicate this work to the spirit of my grandmother who was always support and encourage me and I know also that his wish was to see me here.

Sarah Ahmed El sayed Afifi

Content

Topic	Page
•List Of Tables	II
•List Of Figures	IV
•List of abbreviations	VII
✓ Introduction	1
✓ AIM of Work	4
✓ Review Of Literature	5
Chapter1 Anatomy	5
Chapter2 Histology and patho-etiology	15
Chapter3 Physiology	22
Chapter4 Management of turbinate hypertrophy	34
✓ Materials and Methods	54
✓ Results	62
✓ Discussion	81
✓ Conclusion	86
✓ Recommendation	87
✓ Summery	88
✓ Reference	91
✓ Arabic summery	-

List of Tables

Table	Title	Page
1	The collected data from the included articles	57
2	Meta-analysis for rate of freedom from crustations after PIT	62
3	Meta-analysis for the rate of improvement of hyposmia after PIT	65
4	Meta-analysis for the rate of improvement of nasal obstruction after PIT	66
5	Meta-analysis for the rate of improvement of rhinorrhea after PIT	67
6	Meta-analysis for the incidence of postoperative bleeding after PIT	68
7	Meta-analysis for the incidence of postoperative atrophic rhinitis after PIT	70
8	Meta-analysis for the rate of freedom from crustations after RF	71
9	Meta-analysis for the rate of improvement of hyposmia after RF	72
10	Meta-analysis for the rate of improvement of nasal obstruction after RF	74
11	Meta-analysis for the rate of improvement of rhinorrhea after RF	76

Table	Title	Page
12	Meta-analysis for the incidence of postoperative bleeding after RF	77
13	Meta-analysis for the incidence of postoperative atrophic rhinitis after RF	78
14	Meta-analysis for 2-arm studies comparing RF vs. PIT as regards freedom from crustations	79
15	Meta-analysis for 2-arm studies comparing RF vs. PIT as regards the incidence of postoperative bleeding	80

List of Figures

Figure	Title	Page
1	Lateral wall of right nasal cavity showing inferior concha in situ	7
2	Parasagittal CT reconstruction showing relation of the nasal swell body (SB) to the inferior turbinate (IT).	9
3	Modified coronal CT reconstructions, at various angles to the horizontal, to approximate perpendicular orientation to direction of airflow.	10
4	Blood supply of the lateral nasal wall	12
5	Nerve supply of the lateral nasal wall	14
6	Section of a right-sided, normal inferior turbinate, demonstrating the difference in thickness between the two mucosal layers.	16
7	Sections show the dimensions of hypertrophic (A) and normal (B) inferior turbinates	20
8	A histological section from a patient with hypertrophic inferior turbinate	21
9	Acoustic rhinometry	28
10	describing the nasal resistance in normal nasal cavity	29
11	Rhinomanometry P-V curves for right nasal cavity.	33
12	Presurgery and postsurgery axial and coronal cone beam computed tomography (CBCT) views of hypertrophied turbinates.	35

Figure	Title	Page
13	Endoscopic view of left inferior turbinate.	36
14	Insertion of the plade of the cautary in the inferior turbinate for electrocauterization.	41
15	Endoscopic view after partial inferior turbinectomy.	42
16	Cryoprobe.	44
17	Crushing the inferior turbinates.	45
18	Inferior turbinoplasty.	46
19	Elevation of the mucosa and resection of the conchal bone.	47
20	Radiofrequency inferior turbinectomy.	49
21	Microdebrider assisted inferior turbinectomy.	50
22	Laser inferior turbinectomy.	52
23	Shows metaanalysis for the rate of freedom from crustations after partial inferior turbinectomy.	63
24	Shows funnel plot for the rate of freedom of crustations after PIT, there was evidence of publication bias.	
25	Shows metaanalysis for the rate of improvement of hyposmia after partial inferior turbinectomy.	65
26	Shows metaanalysis for the rate of improvement of nasal obstruction after partial inferior turbinectomy.	66
27	Shows metaanalysis for the rate of improvement of rhinorrhea after partial inferior turbinectomy	67
28	Shows metaanalysis for the rate of incidence of postoperative bleeding after partial inferior turbinectomy	68

Figure	Title	Page
29	Shows Funnel plot for the incidence of postoperative bleeding after partial inferior turbinectomy, there was no publication bias.	69
30	Shows metaanalysis of the rate of postoperative atrophic rhinitis after partial inferior turbinectomy.	70
31	Shows metaanalysis for the rate of freedom from crustations after radiofrequency ablation.	71
32	Shows metaanalysis for the rate of improvement of hyposmia after radiofrequency ablation.	73
33	Shows metaanalysis for the rate improvement of nasal obstruction by radiofrequency ablation.	75
34	Shows metaanalysis for the rate of improvement of rhinorrhea after radiofrequency ablation.	76
35	Shows metaanalysis for the rate of incidence of postoperative bleeding after radiofrequency ablation.	77
36	Single study shows metaanalysis for the rate of incidence of postoperative atrophic rhinitis after radiofrequency ablation.	78
37	Single study comparing radiofrequency ablation versus partial inferior turbinectomy as regard the incidence of freedom from crustations.	79
38	Single study comparing radiofrequency ablation versus partial inferior turbinectomy as regard the incidence of postoperative bleeding.	80

Lists of abbreviation

CI	Confidence interval
CSA	Cross sectional area
FEM	Fixed effect model
IT	Inferior turbinate
MC	Medial crura
MCA	Minimum cross sectional area
OTC	Over the counter
PIT	Partial inferior turbinectomy
RCT	Randomized control trial
REM	Randomized effect model
RF	Radiofrequency
RFITT	Radiofrequency induced thermotherapy
RR	Risk ratio
SB	Swell body
ULC	Upper lateral cartilage
VIP	vasoactive intestinal polypeptide
Vs	Versus

Introduction

Nasal resistance is defined as resistance offered to the air entry by the nasal cavity. It prevents collapse of lung. It includes resistance provided by velopharynx, nasal vestibule and ala nasi muscle which plays a vital role in determining nasal resistance at the level of nasal vestibule (*Miman et al.*, 2006).

Nasal valve is the narrowest portion of the whole nasal cavity. It contributes the maximum to the nasal airway resistance. Anatomically this area lies just anterior to the inferior turbinate, about 2 cm. distal to the nasal aperture, with an average cross sectional area of about 0.73 cm². It is governed by the size of the inferior turbinate, nasal septum and the upper lateral cartilage. So swelling of inferior turbinate has an important determining effect in the nasal resistance (*Haight and Cole*, 1983).

Turbinated nasal passages of nasal cavities can undergo increase / decrease in size because of their erectile nature, contributing to nasal resistance immensely. That's why nasal decongestants play a role in reducing nasal resistance by reducing the size of the turbinate(*Núñez-Fernández et al.*, 2007).

Studies revealed that nasal resistance accounts roughly for about 50% of total airway resistance. The head of the inferior turbinate interferes directly with the entering airflow and its tail, in case of hypertrophy, can significantly reduce the choanal size

and increase the nasal resistance. Hence treatments aimed at reducing the size of inferior turbinate will have significant effect on nasal resistance when compared to that of nasal septal surgeries aimed at removing spurs (*Courtiss*, 1988).

Every person experiences some degree of turbinate dysfunction at some point in his/her lifetime. Persistent dysfunction is not uncommon and involves approximately 50% of the population(*Mackay and Bull, 1997*).

Medical therapy is the first-line approach to the treatment of turbinate dysfunction; however, the appropriate choice of therapy relies on the appropriate diagnosis. Nasal decongestants, in both topical and oral forms are some of the most effective drugs available for reducing congestion of the turbinate mucosa but it has rebound effect. Local and systemic steroid has also effect in the size of turbinates (*Mabry*, 1994).

Surgical therapy is reserved for those patients who do not respond to appropriate medical therapy and clinically remain symptomatic.

Despite the popularity of turbinate surgery, there is no standardized way to define turbinate hypertrophy or to select a patient for turbinate surgery. Additionally, no standardized way to select the type of turbinate surgery needed exists. It is still a clinical judgment based on the patient's symptoms, the physical

examination, and naso-endoscopy findings(*Hol and Huizing*, 2000).

There is many different techniques for turbinate reduction such as turbinoplasty, radiofrequency ablation (RFA), turbinotomy, Argon plasma coagulation, high-frequency electrosurgery, LASER turbinectomy and partial inferior turbinectomy(*Tanna et al.*, 2014).

Aim of study

To compare between two techniques of inferior turbinate reduction, partial inferior turbinectomy and radiofrequency reduction surgery as regard outcome advantage and disadvantage of each of them.

Anatomy

The anterior part of the nasal cavity, opens anteriorly in the nostril while communicates with the rhinopharynx. It is divided into three parts: the nasal vestibule, the olfactory region and the respiratory region. The junction of the vestibule with the nasal cavity is called the internal nasal valve. It is situated between the caudal end of the upper alar cartilage laterally, and the septum medially. Its apical angle has an angulation of less than 15°. It is the narrowest site of the nasal cavity, only 0.3 cm² on each side(*Masing*, 1967) (*Proctor et al.*, 1973).

The lateral nasal wall supports the three turbinates (inferior, middle, superior and sometimes there is even a supreme) that divide this lateral wall into three meatus (inferior, middle, superior). Before 9 weeks of gestation, three soft tissue elevations (the preturbinates) can be identified within the nasal cavity; they are orientated both in size and position in a similar way to the inferior, middle and superior turbinates in the adult (*Bingham et al.*, 1991). The turbinates contain cartilage at 9 weeks of gestation. The inferior turbinate ossification appears to precede that of the middle turbinate (17 weeks versus 19 weeks of gestation](*Wang and Jiang*, 1997).

The inferior nasal concha extends horizontally along the lateral wall of the nasal cavity and consists of a lamina of spongy bone, curled upon itself like a scroll. It has two surfaces, two borders, and two extremities.

The medial surface is convex, perforated by numerous apertures, and traversed by longitudinal grooves for the lodgment of vessels. The lateral surface is concave and forms part of the inferior meatus. Its upper border is thin, irregular, and connected to various bones along the lateral wall of the nasal cavity. The inferior nasal concha articulates with four bones: the ethmoid, maxilla, lacrimal, and palatine .It is divided into three portions: the anterior articulates with the conchal crest of the maxilla; the posterior with the conchal crest of the palatine; the middle portion presents three well-marked processes, which vary much in their size and form. Of these, the anterior or lacrimal process is small and pointed and is situated at the junction of the anterior fourth with the posterior three-fourths of the bone: it articulates, by its apex, with the descending process of the lacrimal bone, and, by its margins, with the groove on the back of the frontal process of the maxilla, and thus assists in forming the canal for the nasolacrimal duct. Behind this process a broad, thin plate, the ethmoidal process, ascends to join the uncinate process of the ethmoid; from its lower border a thin lamina, the maxillary process, curves downward and lateral ward; it articulates with the