"The possible protective or curative role of protein isolated from seeds of *Peganum harmala* plant against carbon tetrachloride induced toxicity in male albino rats"

Presented by

Gamaia Ali Mohamed Aswiai

A Thesis Submitted

To Faculty of Science

In Partial Fulfillment of the Requirements for

The degree of M.Sc. in Zoology

(Comparative physiology)

Zoology Department Faculty of Science Cairo University (2010)

Acknowledgement

First of all thanks God for every thing in my life.

I wish to express my deep gratitude to Prof. Dr. Helal Saad Abu-El-zahab, Professor of physiology, Zoology Department, Faculty of Science, Cairo University, Dr. Amal Mahmoud Ali Soliman, Lecturer of Comparative physiology, Zoology Department, Faculty of Science, Cairo University and Dr. Hanaa Elbadawy Ahmed, Lecturer of plant physiology, Botany Department, Faculty of Science, Cairo University, for suggesting the topic, supervising the work and for their advisement and instructions throughout the entire course of the work.

My sincere thanks, deep appreciation and gratitude to **Dr. Sohair R Fahmy,** Lecturer of Comparative physiology, Zoology Department, Faculty of Science, Cairo University for his advice guidance and valuable help during this work.

Finally, thanks are offered to **Dr.Zeinab Hussein Kamel**Assistant professor of physiology, Zoology Department, Faculty of
Science, Cairo University and to all the staff members and colleagues
of plant and Zoology Departments, Faculty of Science, Cairo
University for their available help through this work.

DEDICATION

Thesis is lovingly dedication to my father, my mother, my husband "

Mohamed Ibrahim", my son "Seifyan" and my daughter "Rayan" and every member of my family for their support and encouragement through out the work..

Abstract

The present study was conducted to determine the protective and curative roles of the purified protein from seeds of Peganum harmala plant against carbon tetrachloride induced toxicity in mal albino rats. The purification steps included ammonium sulphate fractionation, chromatography on DEAEcellulose, CM-sepharose (CL-B6) and superdex 75 columns. The molecular mass of purified protein was 132 KDa by gel filtration on sephadex G-100 column with two subunits each diamer composed of 30.199 KDa and 38.018 KDa by SDS-polyacrylmaide gel electrophoresis. The dose-dependent effect of the purified protein at different doses (0.5, 1, 2, 4, 8 mg/kg b.wt) prior to CCl₄ administration was found to be at the two doses (4 and 8 mg/kg b.wt) as assessed by their effects on serum alanine aminotransferase (ALT) activity. Antioxidant activity of the purified protein was determined in vitro using 1,1-Diphenyl -2-picrylhydrzyl (DPPH) radical test. Administration of CCl₄ significantly increased in serum activities of ALT, AST, ALP and serum levels of lipid profile parameters, urea, BUN, creatinine and uric acid and malondialdyhayde level in liver and kidney tissues was found significantly increased subsequent to CCl₄ administration. Significant decrease in serum total protein, and SOD, CAT and GSH activities in liver and kidney tissues was observed after CCl₄ administration. While, treatment with the purified protein from seeds of Peganum harmala plant at the two selected doses either pre- or post-CCl₄ administration significantly altered the deteriorating damage induced by CCl₄ toxicity to almost normal range which were nearly similar to that of vitamin C group. These results suggest that the purified protein from seeds of *Peganum* harmala plant possesses both protective and curative role against CCl₄ induced toxicity and probably acts by an anti-oxidative defences' mechanism through free radical scavenging activity which may be due to presence of hydrophobic, antioxidant, sulphur and aromatic amino acids.

Key words: *Peganum harmala* plant, Carbon tetrachloride (CCl₄), isolated protein, hepatic and renal toxicities, biochemical and oxidative stress parameters.

Contents	Page
1- Introduction	1
2- Materials and Methods	19
I- Plant material	19
II- Experimental animals	19
III- Chemicals.	19
IV-Methods for extraction and purification of antioxidant protein.	19
1- Preparation of plant extraction buffer	19
2. Preparation of crude extract	20
3. Ammonium sulphate fractionation	20
4. Determination of free radical scavenging activity of protein fractions	21
5. Chromatographic separations	22
5.1. Ion exchange chromatography	22
5.1.1- By using diethylaminoethyl-cellulose(DEAE-cellulose)	22
column.	22
5.1.2- By using CM-sepharose (CL B6) column	22
5.2. Gel- filteration chromatography	23
6. Determination of molecular mass	23
6.1- By using gel- filtration	23
6.2-By SDS-polyacrylamid gel electrophoresis	
(SDS-PAGE)	24
7. Analysis of amino acid composition	28
V- Determination of in vitro antioxidant activity of the purified	•
protein	28
VI- Determination of dose-dependent effect of the purified	•
protein	28
VII- Experimental design	28
VIII- Methods and techniques	30

1- Biochemical analysis of serum		
1.1. Determination of serum aminotransferase enzymes		
(ALT& AST)	31	
1.2. Determination of serum alkaline phosphatase (ALP)	32	
1.3. Determination of serum total protein	34	
1.4. Determination of serum total lipids	35	
1.5. Determination of serum triglycerides	36	
1.6. Determination of serum total cholesterol	38	
1.7. Determination of serum HDL-cholesterol	39	
1.8. Determination of serum LDL-cholesterol	41	
1.9. Determination of serum urea	43	
1.10. Determination of blood urea nitrogen (BUN)	44	
1.11. Determination of serum creatinine	44	
1.12. Determination of serum uric acid	45	
2- Determination of oxidative stress parameters in liver and kidney	48	
tissues		
2.1. Estimation of superoxide dismutase (SOD)	48	
2.2. Estimation of catalase (CAT)	50	
2.3. Estimation of reduced glutathione (GSH)	51	
2.4. Estimation of lipid peroxidation (malondialdehyde)		
(MDA)	52	
3 - Histological technique	54	
VX - Statistical analysis		
3- Results	55	
1. Extraction and purification of antioxidant protein	55	
1.1. Preparation of crude extract	55	
1.2. Ammonium sulphate fractionation	55	
1.3. Chromatography separations	58	

1.3.1. Chromatography on DEAE-cellulose column	58
1.3.2. Chromatography on CM-sepharose (CL-B6) column	58
1.3.3. Chromatography on superdex 75 column	59
2. Molecular mass of the purified protein from seeds of	
Peganum harmala plant	63
2.1. Using gel- filtration technique	63
2.2. Using sodium dodecyl sulphate polyacrylamide gel	
electrophoresis (SDS-PAGE)	63
3. Amino acid analysis of the purified protein	66
4. <i>In vitro</i> antioxidant activity of the purified protein	68
5. Dose-dependent effect of the purified protein	69
A. Pre-treatment groups	70
A.1. Serum biochemical parameters	70
A.1.1. Serum alanine aminotransferase (ALT)	70
A.1.2. Serum aspartate aminotransferase (AST)	70
A.1.3. Serum alkaline phosphatase (ALP)	73
A.1.4. Serum total protein.	73
A.1.5. Serum total lipids	76
A.1.6. Serum triglycerides	76
A.1.7. Serum total cholesterol.	78
A.1.8. Serum HDL-cholesterol	78
A.1.9. Serum LDL-cholesterol	80
A.1.10. Serum urea	80
A.1.11. Blood urea nitrogen (BUN)	83
A.1.12. Serum creatinine.	83
A.1.13. Serum uric acid.	85
A.2. Oxidative stress parameters in liver and kidney tissues	87

A.2.1. Superoxide dismutase (SOD)	87
A.2.2. Catalase (CAT)	87
A.2.3. Reduced glutathione (GSH)	90
A.2.4. Lipid peroxidation (Malondialdehyde MDA)	90
A.3. Histological observation.	93
A.3.1. The liver	93
A.3.2. The kidney	99
B. Post- treatment groups	105
B.1. Serum biochemical parameters	105
B.1.1. Serum alanine aminotransferase (ALT)	105
B.1.2. Serum aspartate aminotransferase (AST)	105
B.1.3. Serum alkaline phosphatase (ALP)	108
B.1.4. Serum total protein.	108
B.1.5. Serum total lipids.	111
B.1.6. Serum triglycerides	111
B.1.7. Serum total cholesterol.	113
B.1.8. Serum HDL-cholesterol.	113
B.1.9. Serum LDL-cholesterol	115
B.1.10. Serum urea	115
B.1.11. Serum blood urea nitrogen (BUN)	118
B.1.12. Serum creatinine.	118
B.1.13. Serum uric acid.	120
B.2. Oxidative stress parameters in liver and kidney tissues	122
B.2.1. Superoxide dismutase (SOD)	123
B.2.2. Catalase (CAT).	123
B.2.3. Reduced glutathione (GSH).	125
B.2.4. lipid peroxidation (Malondialdehyde MDA)	125
B.3. Histological observations.	128
B.3.1. The liver.	128

B.3.2. The Kidney	134
4- Discussion	138
5- Summary	179
6- References	186
7- Arabic summary	219

List of Tables

l'able No.		Page
1	Purification steps of protein isolated from seeds of	
	Peganum harmala plant	56
2	Amino acid composition of the purified protein from	
	seeds of Peganum harmala plant	67
3	Effect of the purified protein from seeds of Peganum	
	harmala pretreatment on serum ALT, AST and ALP	
	enzyme activities of rats against CCl ₄ induced	
	toxicity	71
4	Effect of the purified protein from seeds of Peganum	
	harmala pretreatment on serum total protein and	
	lipids profile levels of rats against CCl ₄ induced	
	toxicity	74
5	Effect of the purified protein from seeds of <i>Peganum</i>	
	harmala pretreatment on serum urea, BUN,	
	creatinine and uric acid levels of rats against CCl ₄	
	induced toxicity	81
6	Effect of the purified protein from seeds of <i>Peganum</i>	
	harmala pretreatment on SOD & CAT activities and	
	GSH & MDA levels in liver and kidney tissues of	
	rats against CCl ₄ induced toxicity	88
7	Effect of the purified protein from seeds of <i>Peganum</i>	
	harmala post-treatment on serum ALT, AST and	
	ALP enzyme activities of rats against CCl ₄ induced	10-
	toxicity	106

8	Effect of the purified protein from seeds of <i>Peganum</i>	
	harmala post-treatment on serum total protein and	
	lipids profile levels of rats against CCl ₄ induced	
	toxicity	109
9	Effect of the purified protein from seeds of Peganum	
	harmala post-treatment on serum urea, BUN,	
	creatinine and uric acid levels of rats against CCl ₄	
	induced toxicity	116
10	Effect of the purified protein from seeds of <i>Peganum</i>	
	harmala post-treatment on SOD & CAT activities	
	and GSH & MDA levels in liver and kidney tissues	
	of rats against CCl ₄ induced toxicity	123

List of Figures

Fig. No.		Page
1	Calibration curve for estimation of the molecular	
	mass of the protein by gel filtration on sephadex G-	
	100 column. (30 cm×1.5 cm)	26
2	Calibration curve for estimation of the molecular	
	mass of the protein by SDS-polyacrylamide gel	
	electrophoresis	27
3	DPPH radical scavenging activity of protein	
	fractions isolated from seeds of Peganum harmala	
	plant with various concentrations of ammonium	
	sulphate	57
4	A typical elution profile for the behavior of protein	
	isolated from seeds of Peganum harmala plant on	
	DEAE-cellulose column (18cm ×2 cm)	60
5	A typical elution from seeds of Peganum harmala	
	plant on CM-Sepharose column (18cm ×2 cm)	61
6	A typical elution profile for the behavior of protein	
	isolated from seeds of Peganum harmala plant on	
	superdex 75 column (15cm ×2 cm)	62
7	A typical elution profile for the behavior of protein	
	isolated from seeds of Peganum harmala plant on	
	Sephadex-G-100 column (30 cm×1.5 cm)	64
8	In vitro antioxidant activity of the purified protein	
	at different concentrations (μ g/ml) on DPPH	
	radical	69
9	Dose-dependent effect of the purified protein from	
	seeds of Peganum harmala pretreatment on ALT	
	activity in blood serum against CCl ₄ induced hepatic	
	damage	69

10A	Effect of the purified protein pretreatment on serum	
	ALT activity of rats against CCl ₄ induced	5 0
100	toxicity	72
10B	Effect of the purified protein pretreatment on serum	
	AST activity of rats against CCl ₄ induced toxicity	
		72
11A	Effect of the purified protein pretreatment on serum	
	ALP activity of rats against CCl ₄ induced toxicity	
		75
11B	Effect of the protein pretreatment on serum total	
	protein level of rats against CCl ₄ induced toxicity	
		75
12A	Effect of the purified protein pretreatment on serum	
	total lipids concentration of rats against CCl ₄	
	induced toxicity.	77
12B	Effect of the purified protein pretreatment on serum	
	triglycerides level of rats against CCl ₄ induced	
	toxicity.	77
13A	Effect of the purified protein pretreatment on serum	
	cholesterol level of rats against CCl ₄ induced	
	toxicity	79
13B	Effect of the purified protein pretreatment on serum	
	HDL- Cholesterol level of rats against CCl ₄ induced	
	toxicity	79
14A	Effect of the protein pretreatment on serum LDL-	
	cholesterol level of rats against CCl ₄ induced	
	toxicity	82
14B	Effect of the purified protein pretreatment on serum	
	urea level of rats against CCl ₄ induced	

	toxicity	82
15A	Effect of the purified protein pretreatment on BUN	
	level of rats against CCl ₄ induced	
	toxicity	84
15B	Effect of the purified protein pretreatment on serum	
	creatinine level of rats against CCl ₄ induced	
	toxicity	84
16	Effect of the purified protein pretreatment on serum	
	uric acid level of rats against CCl4 induced toxicity	
		86
17A	Effect of the purified protein pretreatment on liver and	
	kidney tissues SOD activity of rats against CCl ₄	
	induced toxicity	89
17B	Effect of the purified protein pretreatment on liver and	
	kidney tissues CAT activity of rats against CCl ₄	
	induced toxicity	89
18A	Effect of the purified protein pretreatment on liver	
	and kidney tissues GSH of rats against CCl ₄	
	induced toxicity	92
18B	Effect of the purified protein pretreatment on liver and	
	kidney tissues MDA level of rats against CCl ₄ induced	
	toxicity	92
19A	Effect of the purified protein post-treatment on	
	serum ALT activity of rats against CCl ₄ induced	
	toxicity	107
19B	Effect of the purified protein post-treatment on	
	serum AST activity of rats against CCl ₄ induced	
	toxicity	107
20A	Effect of the purified protein post-treatment on	
	serum ALP activity of rats against CCl ₄ induced	
	toxicity	110