INTEGRATION OF SOME PRE-AND POST-HARVEST TREATMENTS FOR MANAGEMENT OF GRAY MOLD OF TABLE GRAPE

By

Al-Haythm Ahmad Ahmad Al-Essawy

B.Sc.Agric.Sc.(Plant Pathology), Ain Shams Univ. (2005)

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Sustainable Crop Protection)

Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

Approval Sheet

INTEGRATION OF SOME PRE-AND POST-HARVEST TREATMENTS FOR MANAGEMENT OF GRAY MOLD OF TABLE GRAPE

By

Al-Haythm Ahmad Ahmad Al-Essawy

B.Sc.Agric.Sc.(Plant pathology), Ain Shams Univ. (2005)

Dr. Mohamed Anwar Abd-Al-Sattar Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Suez Canal University.
Dr. Mohamed Aly Ahmed Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University.
Dr. Medhat Kamel Ali Prof. Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University.
Date of Examination: 11/02/2018

This thesis for M. Sc. degree has been approved by:

INTEGRATION OF SOME PRE-AND POST-HARVEST TREATMENTS FOR MANAGEMENT OF GRAY MOLD OF TABLE GRAPE

By

Al-Haythm Ahmad Ahmad Al-Essawy

B.Sc.Agric.Sc.(Plant Pathology), Ain Shams Univ. (2005)

Under the supervision of:

Dr. Ahmed Ahmed Mosa

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University.

Dr. Medhat Kamel Ali

Prof. Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University.

Dr. IsmailAbd Al-Latif Soliman Rashid

Senior Researcher, Postharvest Disease Research Department, Plant Pathology Research Institute, ARC.

Abstract

Al-Haythm Ahmad Ahmad Al-Essawy:Integration of some Pre- and Post-Harvest Treatments for Management of Grey Mould of Table Grape, Unpublished M.Sc. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2018.

Grapes (*Vitisvinifera*) are attacked with a variety of fungal pathogens. The most distractive pathogen at cold-storage conditions is *Botrytiscinerea*Pres.: F. causing grey mould disease. This fungus has ruthless ability to invade the grapes at different phenological stages, *i.e.* during blooming and at véraison and through the handling and storing processes. Recently, *Botrytis cinerea* has showed a resistance to some fungicides *e.g.* Iprodione, as an impact of excessive use of fungicides on environment, so with new environmental sustainable measures, resulting in hard regulations toward pesticide residues, it was necessary to find alternative safe control tools to manage grey mould disease.

A survey for occurrence and frequency of most dominant fungal taxa associated with grape flowers and berries was carried out. *Botrytiscinerea*has the most occurrence and the highest frequency, and Beheira governoratehas the greatest frequent of *B. cinerea*.

An *in-vitro* study has been done to achieve the most effective treatments to be applied in farms cultivating *Vitisvinifera* to meet exportation standards.

With Essential Oils, BCAs, GRAS compounds (Generally Recognised as a Safe) and physical treatment carried out, the cinnamon, clove, acetic acid and the potassium sorbate has the significant action against the mycelial growth of the fungus.

Studies have been caried out *In vivo* to investigate the potintial load of *B. cinerea*, in three phenological stages of two tested cultivars; Flame seedless and Superior seedless, it has been investigated what the most phenological stage has the potential of highest load of *B. cinerea*. It was

found that at véraison of Flame Seedless has the most potential load of *B. cinerea*. Then the potential of *B. cinerea* to occupy different parts of grape clusters for Flame Seedless and Superior Seedless cvs., pedicles showed the most load of *B. cinerea*.

Treatments has been caried out with two strategies, 1st an application *in situ* conditions at preharvest for two seasons 2014/15 in both cultivars,Flame seedless and Superior seedless, showed that the cinnamon, clove oil, and potassium thio sulphate were the most effective treatment to manage the grey mould rot incidence in field or even in cold-storage condition. Meanwhile, the 2nd is post-harvest trails, which have concluded that vapourisation with cinnamon, clove or acetic acid showed the greatest effect to manage the mould incidence.

Key words:Grapes, *Botrytiscinerea*, Grey mould, Alternative safe control, GRAS, Plant Pathology, Postharvest, Sustainable agriculture

ACKNOWLEDGMENT

First and foremost, my deepest grateful and thanks to **Allah**, for his countless blessings.

Endless thanks and gratitude are due to my supervisory committee chair **Prof. Dr.Ahmed Ahmed Mosa**, **Prof. Dr.Medhat Kamel Ali**, **Dr. Ismail Rashid** for contributing thier time and effort in providing constructive criticism, advice and moral support throughout each step in my studies.

I am especially grateful to **ProfDr. Salah Al-Sayed Youssuf** - Former Minister of Agriculture and Land Reclamation (MALR)-for the countless hours of discussion, reviewing and preparation of my study. Especially for his relentless efforts to help me structure and shorten my ideas to make my work more valuble.

Finally, my deepest gratitude is due to my **family** for their continuous unconditional love, support, encouragement, and guidance throughout my life, without which I wouldn't have been able to finish this work.

CONTENTS

LIST OF ABBREVIATIONS	i
LIST OF TABLES	iii
LIST OF FIGURES	vii
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. The causal organism	4
2.1.1. Relevance and economic impact of <i>Botrytis cinerea</i> , the	7
causal organism of grey mould rot on grapes	4
2.1.2. Disease syndrome of grey mould rot on table grapes and	_
fungal pathogenicity	5
2.1.2.1. Disease symptoms	5
2.1.2.2. <i>Botrytis cinerea</i> infections, times and sites	6
2.1.2.3. Pathogenicity of <i>Botrytis cinerea</i> on grapes	6
2.1.2.4. Relative dominance of fungal taxa associates with	7
grapeberries	,
2.1.2.5. The morphological characteristics of <i>B. cinerea</i>	8
isolates	o
2.1.2.6. Griseofulvin production by <i>B. cinerea</i> isolates	9
2.2. Alternatives to conventional botryocides	10
2.2.1. Efficacy of some GRAS (Generally Recognise as safe)	
compounds, Essential Oils (EOs) and BCAs (Biological Control	10
Agents) as treatments on growth of <i>Botrytis cinerea in vitro</i>	
2.2.1.1. Salts	10
2.2.1.2. Organic acids	13
2.2.1.3. Chitosan	13
2.2.1.4. Essential oils (EOs)	15
2.2.1.5. Biological control agents (BCAs)	17
2.2.1.6. Modified atmosphere	18
2.2.2. Efficacy of some GRAS compounds, BCAs and other	19
alternatives as treatments <i>in situ</i> condition	
2.2.2.1. Salts	19
2.2.2.2. Chitosan	27
2.2.2.3. Essential oils (EOs)	29
2.2.2.4. Biological control agents (BCAs)2.2.3. Efficacy of some GRAS compounds, EOs and physical	31
treatments at Post-harvest on grey mould in table grape at	32

	co	ld-storage	
		Organic acids	32
		Essential oils (EOs)	34
		Modified atmosphere (MA)	36
3.	MATERIALS A	AND METHODS	39
		occurrence and frequency, isolation and identification	39
		pe associated fungi	
		arrence and frequency of fungi associated with table	39
		es in-situ and during cold-storage	20
	3.1.1.1.		39 39
		Grape bunches gathered from cold storage Isolation experiment and identification	39 39
		dies	40
		ral characteristics and clustring of <i>B. cinerea</i> isolates	40
	3.2.1.1		40
		Detection of griseofulvin produced by <i>Botrytis</i>	
	0.2.1.2.	isolates	40
	3.2.1.3.	Clustering of <i>B. cinerea</i> isolates.	41
	3.2.2. Virul	lence of <i>B. cinerea</i> isolates representing groups	43
clusters			
		Inoculum preparations	43
	3.2.2.2.		44
		valuation of certain Essential oils (EOs), GRAS	
compounds, MA and BCAs on Botrytis cinerea growth in			43
	vit		
	3.2.3.1.	Effect of certain EOs on mycelial growth of <i>B. cinerea</i> in vitro	44
	3232	Effect of certain salts as GRAS compounds on mycelial	
	3.2.3.2.	growth of <i>B. cinerea in vitro</i>	47
	3.2.3.3.	Effect of acetic acid as GRAS compound on mycelial	47
		growth of <i>B. cinerea in vitro</i>	47
	3.2.3.4.	Effect of chitosan as GRAS compound product on	48
		linear growth of B. cinerea in vitro	40
	3.2.3.5.	Effect of modified atmospheric CO ₂ on mycelial	49
		growth of <i>B. cinerea in vitro</i>	7/
	3.2.3.6.	Obtaining different bio-agent from surface of grape	49
		berries	•-
	3.2.3.7.	Effect of <i>Trichoderma</i> spp. on mycelial growth of <i>B</i> .	50
	227	cinerea in vitro	
	3.3. In vivo tria		50
	3.3.1. Pre-h	narvest investigations and treatments	50

		n B. cinerea load in grape clusters of two	50
		s of grapevine	
		on of some GRAS compounds, EOs and	=4
		reatments on grey mould incidence under	51
		conditions in 2014/15 seasons	
		Efficacy of pre-harvest treatments with certain	51
		salts on grey mould rotincidence	
		Efficacy of pre-harvest treatments with	52
		selected EOs on grey mouldrot incidence	
		Efficacy of pre-harvest treatment with chitosan	53
		on grey mould rot incidence	
		Efficacy of pre-harvest treatment with	53
		Trichoderma spp. on grey mouldrot incidence	
	3.3.2. Post-Harvest Tr		54
		on of some physical, GRAS compounds EOs	- 4
		nents on grey mould rot incidence in-	54
		grage-conditionsin 2014/15 seasons	
		Efficacy of post-harvest vapourisation with	54
		EOs on grey mould rot incidence	
		Efficacy of post-harvest vapourisation with	55
		acetic acids on grey mould rot incidence	
		Efficacy of post-harvest MA treatment on grey mould rot incidence	55
		mould for incidence	
	3.4. Statistical analysis		
4.	. RESULTS		57
	4.1. Survey of occurrence	and frequency, isolation and identification	57
	of table grape associa	tedfungi	31
		frequency of fungi associated with table	57
		nd during cold-storage	
	4.2. In vitro studies		61
		eristics and clustring of <i>B. cinerea</i> isolates	61
	•	characteristics of isolates	62
		n of griseofulvin toxin produced by <i>B</i> .	65
	cinerea		
		ng of <i>B. cinerea</i> isolates	65
		ee of <i>B. cinerea</i> isolates representing groups	71
	clusters		, 1
		ome BCAs and GRAS compounds and	72
		s treatments on <i>B. cinerea</i> growth in vitro	, 4
		certain EOs on mycelial growth of <i>B. cinerea</i>	72
	in vitro		. =

4.2.2.1.1. Essential oils embedded in medium	72
4.2.2.1.2. Essential oils used as vapours	74
4.2.2.1.3. Essential oils used as volatiles	75
4.2.2.2. Effect of certain salts on mycelial growth of <i>B. cinerea in vitro</i>	76
4.2.2.3. Effect of acetic acid on mycelial growth of <i>B. cinerea in vitro</i>	77
4.2.2.3.1. Acetic acid used as embedded in medium	77
4.2.2.3.2. Acetic acid used as vapours	78
4.2.2.4. Effect of chitosan product on mycelial growth of <i>B. cinerea in vitro</i>	79
4.2.2.5. Effect of modified atmospheric CO ₂ on mycelial growth of <i>B. cinerea in vitro</i>	77
4.2.2.6. Effect of <i>Trichoderma</i> spp. on mycelial growth of <i>B. cinerea in vitro</i>	80
	81
4.3. In vivo trials	
4.3.1. Pre-harvest investigations and treatments	81
4.3.1.1. Detection <i>B. cinerea</i> potential in three phenological	01
stages of Flame seedless and Superior seedless	81
grapevine cvs	
4.3.1.2. Detection <i>B. cinerea</i> potential load in defferant sites in	04
bunch of Flame seedless and Superior seedless	82
grapevine cvs	
4.3.1.3. Evaluation of some BCAs, GRAS compounds and	0.6
EOs treatments on grey mould rot incidence under <i>in</i>	86
Situ conditions	
4.3.1.3.1. Efficacy of pre-harvest treatments with	86
selected EOs on grey mould rot incidence	
4.3.1.3.2. Efficacy of pre-harvest treatments with tested salts on grey mould incidence	90
tested salts on grey mould incidence 4.3.1.3.3. Efficacy of pre-harvest treatment with chitosan	
on grey mould rot incidence	94
4.3.1.3.4. Efficacy of pre-harvest treatment with	
Trichoderma spp. on grey mould rot incidence	96
4.3.2. Post-Harvest Trials	99
4.3.2.1. Evaluation of some EOs, GRAS compound, and	
physical as treatments on grey mould rot incidence in-	99
cold-storage-conditionsin 2014/15 seasons	
4.3.2.1.1. Efficacy of post-harvest vapourisation with	
EOs on grey mould rot incidence	99
4.3.2.1.2. Efficacy of post-harvest vapourisation with	
acetic acids on grey mould rot incidence	102

	4.3.2.1.3.	Efficacy of post-harvest MA treatment on grey mould rot incidence	103
5.	DISCUSSION		106
6.	SUMMARY		123
7.	REFERENCES		129
8.	ARABIC SUMMARY		172