Total thyroidectomy versus subtotal thyroidectomy in treatment of multinodular goiter. Meta-Analysis Study

Presented By Esraa Ahmed Mousa Hussein

M.B.B.Ch., Ain shams university.

In partial fulfillment of master degree in otorhinolaryngology

Supervised By

Prof. Dr/ Abd El Hameed El Nashar

Professor of Otorhinolaryngology Faculty of Medicine - Ain Shams University

Assist.Prof. Dr/ Hesham Abd El Aty El Sersy

Assistant Professor of Otorhinolaryngology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr/Abd El Hameed El Nashar**, Professor of Otorhinolaryngology, Faculty of Medicine - Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr Assist.Prof. Dr/Hesham Abd El Aty El Sersy**, Assistant Professor of Otorhinolaryngology, Faculty of Medicine - Ain Shams University, for his continuous directions and support throughout the whole work.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Esraa Ahmed Mousa Hussein

List of Contents

	Page	
Acknowledgment		
List of Abbreviations	i	
List of Figures	ii	
List of Tables	V	
Introduction	1	
Aim of The Study		
Review of Literature		
Chapter 1: Embryology and anatomy of the		
thyroid gland	4	
Chapter 2 : Etiopathology	15	
Chapter 3: Diagnosis of Multinodular Goitre	19	
Chapter 4: Surgical technique	24	
Chapter 5: Complications of thyroidectomy	31	
Chapter 6: Risk Factors and Criteria to Choose	38	
Materials and Methods	43	
Results	48	
Discussion	72	
Conclusion	83	
Recommendations	84	
Summary	85	
References	88	
Arabic Summary		

List of Abbreviations

Anti-Tg: anti-thyroglobulin

BST : Bilateral subtotal thyroidectomy

CT : Computed Tomography

FNA : Fine Needle Aspiration

FNAB : Fine Needle Aspiration Biopsy

ID : Iodine Deficiency

MNG : Multinodular Goitre

NG : Nodular Goitre

RLN : Recurrent Laryngeal nerve

RLNP : Recurrent Laryngeal Nerve Palsy

SLN : Superior Laryngeal nerve

TC: Technetium

TMNG: Toxic Multinodular Goitre

TSH : Thyroid Stimulating Hormone

TT : Total thyroidectomy

US : Ultrasonography

List of Figures

Fig.	Title	Page
1	Embryological development of the thyroid gland	5
2	Anatomy of the thyroid gland	6
3	The arterial supply of the thyroid	7
4	The Venous Drainage of the thyroid	9
5	Anatomy of the external branch of the superior laryngeal nerve	10
6	Anatomy of the recurrent laryngeal nerves	11
7	Surgical anatomy of the parathyroid glands	13
8	Dissection of the strap muscles	26
	Lateral retraction of the upper pole of the thyroid lobe in order to open up the avascular space between the lobe and the cricothyroid	27
	muscle, thus exposing the external branch of the superior laryngeal nerve	
9	Plane of commencement of capsular dissection as indicated by the dotted line on the thyroid surface	28
10	The most common relationship of the tubercle of Zuckerkandl to the recurrent laryngeal nerve and the superior parathyroid gland	30
11	Limited vocal cord movement after RLN injury	34
12	Forest plot for the overall incidence of RLN palsy	49
13	Funnel plot for the overall incidence of RLN palsy	50
14	Forest plot for the incidence of permanent RLN palsy	52
15	Funnel plot for the incidence of permanent RLN palsy	53

Fig.	Title	Page
16	Forest plot for the incidence of temporary RLN palsy	55
17	Funnel plot for the incidence of temporary RLN palsy	56
18	Forest plot for the overall incidence of hypoparathyroidism	58
19	Funnel plot for the overall incidence of hypoparathyroidism	59
20	Forest plot for the incidence of permanent hypoparathyroidism	61
21	Funnel plot for the incidence of permanent hypoparathyroidism	62
22	Forest plot for the incidence of temporary hypoparathyroidism	64
23	Funnel plot for the incidence of temporary hypoparathyroidism	65
24	Forest plot for the incidence of recurrence	67
25	Funnel plot for the incidence of recurrence	68
26	Forest plot for the occurrence of incidental thyroid cancer	70
27	Funnel plot for the occurrence of incidental thyroid cancer	71

List of Tables

Table	Title	Page
1	Classification of extent of thyroidectomy	24
2	Included articles	45
3	Excluded articles and reason for exclusion	45
4	shows met analysis of overall incidence of RLN palsy	48
5	shows met analysis of incidence of permanent RLN palsy	51
6	shows met analysis of incidence of temporary RLN palsy	54
7	shows met analysis of overall incidence of hypoparathyroidism	57
8	shows met analysis of incidence of permanent hypoparathyroidism	60
9	shows met analysis of incidence of temporary hypoparathyroidism	63
10	shows met analysis of incidence of recurrence	66
11	shows met analysis of Incidental thyroid cancer	69

Total thyroidectomy versus subtotal thyroidectomy in treatment of multinodular goiter. Meta-Analysis Study Abstract

Introduction: Multinodular goiter is a common clinical problem that usually develops during the late stage of goiter. Although it is usually benign and asymptomatic in nature, multinodular goiter may predispose the patient to compressive symptoms, develops autonomous functioning nodules, or form suspicious nodules. The clinical treatment of goiter depends on the extent of enlargement, signs and symptoms, and potential underlying causes. Thyroidectomy methods range from nodulectomy to total thyroidectomy (TT) in benign thyroid disorders. TT and bilateral subtotal thyroidectomy (BST) are the most commonly preferred methods by surgeons for MNG. The selected surgical method for thyroid disease should aim to eradicate the disease as well as to minimize postoperative complications. Many areas of surgery continually try to balance the benefits of extensive resection in terms of palliation and cure and the increased potential for complications associated with more radical procedures.

Aim of the work: To compare between two surgical techniques of treatment of multinodular goiter, total thyroidectomy and subtotal thyroidectomy as regard advantage and disadvantage of each of them.

Materials and Methods: systematic review meta analysis study.

Results: relative risk ratio of total over subtotal thyroidecdtomy is transient RLN palsy 1.828; permanent RLN palsy 1.31; transient hypoparathyroidism 2.389; permanent hypoparathyroidism 1.48, incidental thyroid carcinoma 1.691, recurrence 0.013.

This study is mainly concerned with comparing two surgical techniques of thyroidectomy in treatment of multinodular goiter, total thyroidectomy and subtotal thyroidectomy as regard postoperative complications and recurrence via a meta-analysis which showed that the advantages of total thyroidectomy include adequate eradication of the disease, prevention of recurrent goiter and avoidance of the need for completion surgery in case of occult malignancy, but it is associated with higher morbidity (postoperative thyroidectomy complications: RLN palsy and hypoparathyroidism) and the need for lifelong replacement therapy (L-thyroxin supplementation).

Keywords: BST: Bilateral subtotal thyroidectomy; MNG: Multinodular Goitre; TT: Total thyroidectomy; recurrence; postoperative complications.

Introduction

The thyroid is a highly vascular, brownish-red gland located anteriorly in the lower neck, extending from the level of the fifth cervical vertebra down to the first thoracic. The gland varies from an H to a U shape and is formed by 2 elongated lateral lobes with superior and inferior poles connected by a median isthmus, with an average height of 12-15 mm, overlying the second to fourth tracheal ring (**Dominique et al., 2015**).

Disorders of the thyroid gland constitute the second most common endocrine disease following diabetes mellitus. The prevalence of nodular goiter and thyroid autonomy is increased in regions with chronic Iodine Deficiency (ID). It has been documented that the thyroid gland adjusts to ID in the early stages by diffuse hyperplasia, while chronic exposure to ID results in nodular hyperplasia, increased colloid content and increased height of the follicular cells (Karamanakos et al., 2010).

Multinodular goiter is a common clinical problem that usually develops during the late stage of goiter. Although it is usually benign and asymptomatic in nature, multinodular goiter may predispose the patient to compressive symptoms, develops autonomous functioning nodules, or form suspicious nodules. The clinical treatment of goiter depends on the extent of enlargement, signs and symptoms, and potential underlying causes (Yang et al., 2009).

Thyroidectomy is one of the most frequent operations performed in iodine-deficient regions. In the early 20th century. thyroidectomy was associated with increased morbidity and today the mortality. However, improvements in even anesthesia and antisepsis as well as better surgical instrumentation and improvement in the surgical technique have rendered thyroidectomy an efficacious and safe treatment modality with acceptable morbidity and even unrecorded mortality (Karamanakos et al., 2010).

Thyroidectomy methods range from nodulectomy to total thyroidectomy (TT) in benign thyroid disorders. TT and bilateral subtotal thyroidectomy (BST) are the most commonly preferred methods by surgeons for MNG. The selected surgical method for thyroid disease should aim to eradicate the disease as well as to minimize postoperative complications (Ciftci et al., 2015)

Currently, the main postoperative complications of thyroidectomy are Recurrent Laryngeal Nerve Palsy (RLNP) and hypoparathyroidism (Karamanakos et al., 2010).

Many areas of surgery continually try to balance the benefits of extensive resection in terms of palliation and cure and the increased potential for complications associated with more radical procedures (Citgez et al., 2013)

The incidence of thyroid carcinoma varies from 7.5 to 13% in multinodular goiter. The presence of multiple nodules decreases the diagnostic value of fine-needle aspiration biopsy, and thyroid carcinoma is frequently an incidental postoperative histologic finding in MNG (Tezelman et al., 2009).

Aim of the study

To compare between two surgical techniques of treatment of multinodular goiter, total thyroidectomy and subtotal thyroidectomy as regard advantage and disadvantage of each of them.

Chapter 1

Embryology and anatomy of the thyroid gland Embryology of the thyroid gland

The foramen cecum develops as an endodermal thickening in the floor of the primitive pharynx. The medial thyroid primordium derives as a ventral diverticulum at the foramen cecum. During the fourth to seventh week of gestation, this primitive thyroid tissue descends anterior to the hyoid bone and laryngeal cartilages to reach its final adult pretracheal position. The proximal portion of the diverticulum retracts and forms a solid fibrous stalk early at the fifth week. This thyroglossal duct ultimately atrophies, but any portion of it may persist to become the site of thyroglossal duct cyst. The distal portion of the duct gives rise to the pyramidal lobe and levator superioris thyroideae in adults. The lateral thyroid primordia (from the fourth and fifth pharyngeal pouches) descend to join the central component during the fifth week of gestation Figure (1) (Fancy et al., 2010).

Para follicular C cells arise from the neural crest of the fourth pharyngeal pouch as ultimobranchial bodies and infiltrate the upper portion of the thyroid lobes (Lai et al., 2015).

Anatomy of the thyroid gland Figure (2)

The thyroid gland weighs between 15 and 25 g in adults, and comprises 2 lateral lobes connected by a central isthmus.

Each lobe is approximately 4 cm in length, 2 cm in width, and 2 to 3 cm in thickness (Fancy et al., 2010).

A pyramidal lobe may extend superiorly from the isthmus or from the medial portions of the left or right lobes. The thyroid extends from the level of the fifth cervical vertebra to the first thoracic vertebra.

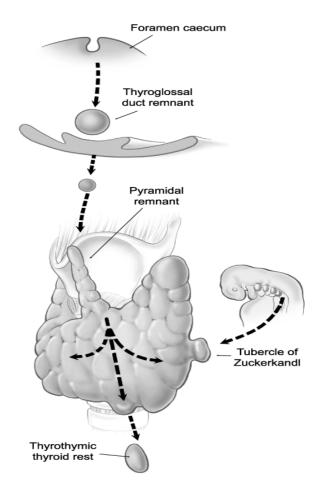


Figure (1): Embryological development of the thyroid gland (Delbridge, 2003).

The thyroid is surrounded by a sleeve of pretracheal fascia. Posteriorly, a thickening of this fascia attaches the gland to the cricoid cartilage. This fascia is the lateral ligament of the

thyroid (ligament of Berry). The anterior surface of the thyroid is related to the deep surface of the sternothyroid, sternohyoid, and omohyoid muscles. Laterally, the gland is related to the carotid sheath. Medially, the superior part of the thyroid is related to the larynx and laryngopharynx. Medially, the inferior part of the thyroid is related to the trachea and the esophagus. The isthmus of the thyroid lies anterior to the second and third tracheal rings (Stewart and Rizzolo, 2012).

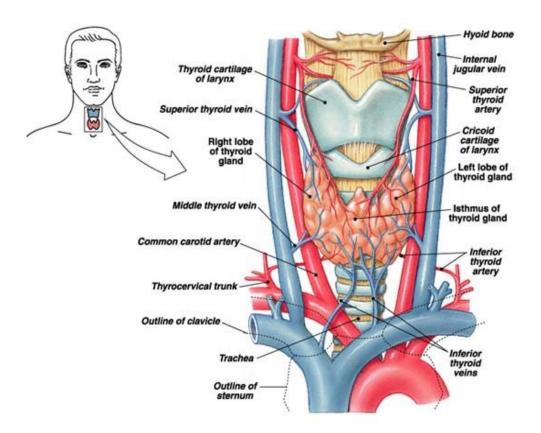


Figure (2): Anatomy of the thyroid gland (Martini et al., 2001).

Blood supply

Arterial supply Figure (3)

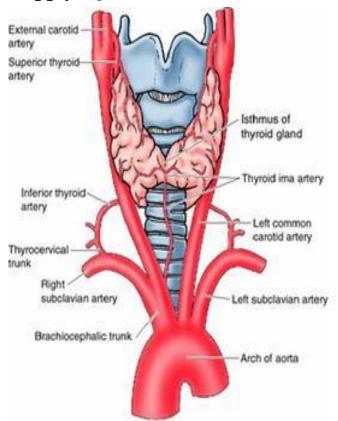


Figure (3): The arterial supply of the thyroid (Moore et al., 2010).

The superior thyroid artery

The superior thyroid artery is a branch of the external carotid artery arising close to the carotid bifurcation. It travels on the external surface of the inferior constrictor muscles of the larynx, along with the superior thyroid vein, entering the gland posteromedially just below the highest point of the upper lobe (Mohebati and Shaha, 2012).

At this point, it lies superficial to the external branch of the superior laryngeal nerve (Fancy et al., 2010).