Retrospective Study Of Survival Benefit Of Second Line Chemotherapy In Adult Soft Tissue Sarcomas

Thesis

Submitted for fulfillment of Master's Degree in Clinical Oncology

By Mustafa Ibrahim Abbas Abdel Gawad M.B.B.Ch

Supervisors

Dr. Waleed Abdel Moneim Biome

Assistant Professor of Clinical Oncology Faculty of Medicine, Ain Shams University

Dr. Amr Shafik Tawfik

Assistant Professor of Clinical Oncology Faculty of Medicine, Ain Shams University

Dr. Doaa Atef Mohamed

Lecturer of Clinical Oncology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2017

سورة طه الآيه رقم ۱۱۶

Contents

	Page
Introduction	1
Aim of The Work	5
Review of Literature	6
Epidemiology And Etiology	6
Pathology of Soft Tissue Sarcoma	8
Diagnosis of Soft Tissue Sarcomas	19
Treatment of Soft Tissue Sarcomas	24
A) Single Agent Chemotherapy	31
B) Combination Chemotherapy	35
C) Targeted Therapy	38
Skeletal Metastasis And Palliative Treatment	40
Prognostic Factors In Soft Tissue Sarcoma	41
Patients and Methods	45
Results	47
Discussion	59
References	77

LIST OF FIGURES

		Page
Figure 1	Microscopic picture of mixed malignant	9
	fibroblast and histiocytes of mandible	
Figure 2	Microscopic picture of liposarcoma that	10
	has enough differentiation to determine	
	the cell of origin (adipocyte), but there	
	is still significant pleomorphism of these	
	neoplastic cells (lipoblasts)	
Figure 3	Microscopic picture of mitotic figure of	11
	lieomyosarcoma	
Figure 4	Microscopic picture of ovarian	12
	angiosarcoma with area of hemorrhage	
	and necrosis	
Figure 5	A picture of synovial sarcoma with	13
	Electron microscope showing excessive	
	mitotic figures	
Figure 6	Microscopic picture of alveolar soft part	13
	sarcoma of oral cavity	
Figure 7	MRI imaging of synovial cell sarcoma of	20
	lower extremity	
Figure 8	a) Volume rendered MDCT image	21
	showing anatomical details of the	
	abdominal wall STS. b) Bone window CT	
	image of recurrence of pelvic STS	
	showing involvement of pubic symphisis	
Figure 9	PET-CT image showing FDG avid lesion	22
	indicative of a pelvic STS	

Figure 10	Age distribution of the studied group	47
	ECOG Performance Status	
Figure11	Response to first line chemotherapy in	50
	the studied group	
Figure12	Response to second line chemotherapy	52
	in the studied group	

LIST OF TABLES

		Page
Table 1	Useful diagnostic chemical tumor markers	14
Table 2	Useful diagnostic genetic tumor markers	17
Table 3	Frequency of smoking and ECOG performance status of the studied group	47
Table 4	Characteristics of the tumors in the studied group	48
Table 5	First line treatment of STS in the studied group	49
Table 6	Response, toxicity grade and ECOG performance status after first line chemotherapy in the studied group	50
Table 7	Type of time of recurrence after first line	51
	chemotherapy in the studied group	
Table 8	Second line chemotherapy for recurrent STS in the studied group	51
Table 9	Response, toxicity grade and ECOG performance status after second line chemotherapy in the studied group	52
Table 10	Type of time of failure after second line chemotherapy in the studied group	53
Table 11	Third line chemotherapy for recurrent STS in the studied group	53
Table 12	Response, toxicity and ECOG performance status after third line chemotherapy	54
Table 13	Response, toxicity and ECOG performance status after fourth line chemotherapy	55
Table 14	Overall survival of STS patients in relation to different prognostic factors	56
Table 15	Time to disease progression after 1 st line chemotherapy in relation to different prognostic factors	57
Table 16	Time to disease progression after 2 nd line chemotherapy in relation to different prognostic factors	58

Abstracts

Retrospective Study Of Survival Benefit Of Second Line Chemotherapy In Adult Soft Tissue Sarcomas

Waleed Abdel Moneim Biome; Dr. Amr Shafik Tawfik; Dr. Doaa Atef Mohamed; Mustafa Ibrahim Abbas Abdel Gawad Faculty of Medicine, Ain Shams University

Soft tissue sarcomas (STS) are relatively rare heterogeneous group of mesenchymal neoplasms that may arise in soft tissue, skin or various organs, and show a broad range of differentiation, such as smooth muscle (leiomyosarcoma), adipocyte (liposarcoma). striated muscle (rhabdomyosarcoma), endothelium (angiosarcoma) or fibroblast (e.g., dermatofibrosarcoma). The aim of the work is to evaluate soft tissue sarcoma patients at Ain Shams University Clinical Oncology Department and Agoza Police Hospital in the last five years (2011-2015) as regards incidence, site, pathological types, response to second line chemotherapy and toxicity, progression free survival and overall survival. This is a retrospective study of patients with STS of different cell types and various sites of origin represented at Ain Shams University Clinical Oncology Department and Agoza Police Hospital in the last five years (2011-2015)**Inclusion criteria** Age \geq 18 years.: Pathologically proven STS.; Radiological or clinical proven metastasis; Patient progressed on first line metastatic chemotherapy. Exclusion criteria: Dermatofibrosarcoma protuberans; Kaposi's Patients with, Gastrointestinal stromal tumors; Desmoids tumors (aggressive fibromatosis); Co-morbidities interfering or contraindicated with appropriate chemotherapy regimens. This is retrospective study included 34 patients with soft tissue sarcoma (STS). The mean age of the patients was 40.9±13.4 years, ranging from 19 to 64 years with male predominance67%. There was an obvious histological diversity where synovial sarcoma was the most frequent type (29.4%) followed by liposarcoma and spindle cell sarcoma. Higher tumor grade was more common (59%) and distant metastases was detected in 18 patients (53%); more commonly with grade 3disease. Surgical treatment was adopted in 29 patients including only 2 amputations. Surgical margin was positive in 18/29 patients (62.1%). Palliative radiotherapy was used in 15 patients (44.1%). The most commonly used 1st line chemotherapy protocol was Ifosfamide + Adriamycin. Response after surgery and 1st line CTH was complete or partial remission in only 50% cases. Remission rate was apparently higher in patients with negative margin.

Key words: STS: soft tissue sarcoma; AJCC: American committe on cancer

Introduction

Soft tissue sarcomas are malignant tumors that arise in any of the mesodermal tissues and represent 1% of adult malignancies and 12% of pediatric malignancies. The most common sites are the extremities (50%), trunk and retroperitoneum (40%), or head and neck (10%), the anatomic sites of primary disease represent an important variable that influence treatment and outcome. The reported international incidence rates range from 1.8 to 5 per 100,000 per year (*Wibmer et al., 2010*)

Incidence of most types of STS increases progressively with age. The median age at diagnosis is 50 years with estimated new cases and deaths from soft tissue sarcoma in the United States in 2015, 11,930 and 4,870 respectively (*Atlanta et al.*, 2015).

The most soft tissue sarcomas are believed to be sporadic and have no clearly cause but in small proportion of cases, researchers have identified various associated risk factors including genetic factors, prior radiation therapy, lymphedema and several chemical agents (*Helman LJ et al.*, 2014).

Soft-tissue sarcomas (STSs) consist of approximately 50 different histological subtypes and have differing clinical behavior and response to chemotherapy. The most common types of STS are undifferentiated pleomorphic sarcoma, leiomyosarcoma, synovial sarcoma and peripheral nerve sheath tumor (*Sharon W et al.*, 2012).

The pathological features that define grade include cellularity, differentiation, pleomorphism, mitotic index and necrosis. The two most important factors are mitotic index and extent of necrosis (*Goldblum et al.*, 2013).

There are also ongoing developments in establishing biomarkers to allow further personalization of therapy (EWSR1-ATF1 in clear cell sarcoma and TLS-CHOP in myxoid or round cell sarcoma) as many types of sarcoma are associated with characteristic genetic aberrations including single base-pair substitutions, deletions, amplifications, and translocations (*Antonescu et al.*, 2006).

An essential element of the work up of sarcoma is a history and physical examination, imaging of the primary tumor and distant metastasis by MRI in extremities sarcoma, CT in retroperitoneal sarcoma. STS most commonly metastasizes to

the lung, Tumors arising in the abdominal cavity more commonly metastasizes to liver and peritoneum (Casali, P. G., and J-Y.Blay et al., 2010).

Pretreatment core needle or open incisional biopsy is highly preferred for diagnosis and grading of STS but FNA can be difficult to make an accurate primary diagnosis (*Domanski et al.*, 2007).

AJCC staging system for STS has historically used a four grade system but within the staging groups this effectively functioned as 2 titred system (low and high grade). The two most widely used grading systems are NCI system and FNCLCC system, both are three-tier systems(low, intermediate high grade), in fact neither FNCLLC nor NCI system has been formally endorsed by either WHO or the association directors of anatomic and surgical pathology (*Coindre et al.*, 2006).

In the advanced disease setting (locally advanced, inoperable or metastatic) palliative chemotherapy is the mainstay of treatment, whereas the goal of surgery and radiotherapy is local control of the tumor, the aim of

chemotherapy is systemic control, which may be therapeutic, adjuvant, or palliative (Mytelka et al., 2016).

Doxorubicin and ifosfamide are, by consensus, the standard first line therapy in advanced soft tissue sarcoma. Docetaxel and gemcitabine appear to be associated with some activity and tolerability in the doxorubicin/ifosfamide refractory patients (*Clin Oncol et al.*, 2007).

Combination chemotherapy in our practice is largely reserved for those with rapidly progressing metastatic disease or inoperable soft tissue sarcoma where response may render disease resectable. In a recent meta-analysis, threerandomized phase III trials were identified comparing combination chemotherapy regimens containing ifosfamide with regimens without ifosfamide. This analysis revealed that the addition of ifosfamide to a chemotherapy regimen significantly improved response rates but did not produce a significant difference in 1 year survival. Higher rates of adverse events, including myelosuppression and death, were observed in patients who received combination chemotherapy (Ludwig, et al., 2008).

Taxanes, such as paclitaxel have been reported to have activity in vascular sarcoma and also docetaxel combination with gemcitabine has been shown to be effective cytotoxic agents against sarcomas and associated with improvement of PFS and OS as second line in advanced STS (Maki et al., 2007).

There is ongoing work on the potential use of molecular targeted therapies such as pazobanib that has recently emerged as an effective TKI agent in patients who have progressed anthracycline ifosfamide and on an antiangiogenic agents, IGF1-R, HDAC, and mTOR inhibitors (Aranha and Agulnik et al., 2008).

AIM OF THE WORK

The aim of the work is to evaluate soft tissue sarcoma patients at Ain Shams University Clinical Oncology Department and Agoza Police Hospital in the last five years (2011-2015) as regards incidence, site, pathological types, response to second line chemotherapy and toxicity, progression free survival and overall survival.

EPIDEMIOLOGY AND ETIOLOGY

Soft-tissue sarcomas (STS) are rare malignant mesenchymal tumors with an extremely diverse range of clinical behaviors and represent 1% of adult malignancies and 12% of pediatric malignancies (Siegle et al., 2015).

Estimated new cases and deaths from soft tissue sarcoma in the United States in 2016 are 12,310 and 4,990, respectively (*Siegle et al., 2016*). In Europe, the estimated incidence of soft tissue sarcoma was approximately 4-5/100000 people per year (*Stiller et al., 2013*).

In Egypt, based on the results of National Cancer Registry Program, incidence rate of soft tissue sarcoma was reported to be 1.7 per 100,000 person-years among males and 1.7 among females (*Ibrahim et al., 2014*).

Soft tissue sarcomas may occur at any age, and although most common in middle aged and older adults, they are relatively more common in children and young adults accounting for 7-10% of pediatric malignancies. They are an

important cause of death in the 14-29 years age group (Geraci et al., 2007).

Most soft-tissue sarcomas are sporadic; few have an identifiable cause. There is an association between certain viral infections (notably Epstein – Barr virus in those with AIDS) and leiomyosarcoma (Singer et al., 2011)

Prior radiation therapy (RT) to the affected area is a risk factor for the development of STS (*Penel et al., 2008*). Other factors associated with Soft tissue sarcoma development include long-standing lymph edema, exposure to arsenical pesticides and medications, herbicides, immunosuppressive drugs, alkylating agents, androgen-anabolic steroids, human immunodeficiency virus, and exposure to human herpes virus type 8 (*Gessan et al., 2005*).

Children with hereditary retinoblastoma (owing to a germline mutation in the RB1tumor-suppressor gene) face an exceptionally high risk of osteosarcoma and soft-tissue sarcoma, which is further increased by the receipt of radiotherapy (*Kleinerman et al., 2007*).