

Leptin Gene Polymorphism and Insulin Resistance in Obese Diabetic Patients: Pilot Study

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

*By*Hend Abd el-Moneim Ibraheim

MB BCh Ain Shams University

Supervised by

Prof. Dr. Manal Zaghloul Mahran

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Prof. Dr. Hossam Mostafa Fahmy

Professor of Clinical Pathology Faculty of Medicine- Ain Shams University

Dr. Nesrine Aly Mohamed

Assistant professor of Clinical Pathology Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

First of all, all gratitude is due to **Allah** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deepest thanks, gratitude, and respect for **Prof. Dr. Manal Zaghloul Mahran**, Professor of Clinical Pathology, Ain Shams University, for her continuous help and support. I was very fortunate to work under her supervision; she introduced me to a completely new field, and was extremely patient as I took my first stumbling steps in this thesis. Her close supervision made everything that much easier and that much possible.

My sincere thanks go to **Prof. Dr. Hossam Mostafa Fahmy,** Professor of Clinical Pathology, Ain Shams University, for his continuous advice and supervision. I'm very grateful for his continuous encouragement and guidance.

I would also like to voice my gratitude for **Dr. Nesrine Aly Mohamed,** Assistant Professor of Clinical Pathology, Ain Shams
University for her working so closely with me to make sure that
everything goes as smoothly as possible. Her continuous help,
encouragement, and attention to detail were a corner stone for this
work to come to light.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support and to my son for being there.

Last but not least, I dedicate this work to my family, specially my Father and my Mother, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	II
List of Figures	III
Introduction	1
Aim of The Work	4
Review of Literature	
Chapter (1): Obesity, Insulin Resistance a Diabetes Mellitus.	and Type 2
Obesity	5
- Definition and classification	5
- Epidemiology	6
- Etiology	7
- Obesity health consequences	8
Type 2 Diabetes Mellitus	13
- Definition	13
- Epidemiology	14
-Risk factors and pathogenesis	15
Insulin resistance	18
- Definition	18
- Biology of insulin receptor and mechanism	m of 19
- Obesity is a major cause of insulin resista	nce21

- Inflammatory links between obesity and insulin resistance	24
Chapter (2): Leptin and Leptin Gene Polymorphism Obese Diabetic Patients	m in
Leptin Hormone	34
- Leptin structure	34
- Leptin production and functions	36
- Regulation of leptin synthesis and secretion	39
Leptin Receptor	41
- Structure and types of leptin receptors	41
- Leptin receptor signal transduction pathways	44
- The adipo-insular axis	47
- Leptin resistance	49
- Leptin gene polymorphism and its impact on obe and Type 2 diabetes mellitus	•
Subjects and Methods	54
Results	72
Discussion	89
Conclusion	101
Recommendations	102
Summary	103
References	108
Arabic Summary	

List of Abbreviations

	3.6
Abb.	Meaning
ACC	: Acetyl-CoA carboxylase
AgRP	: Agouti-related protein
AHA	: American Heart Association
AMPK	: Adenosine monophosphate-activated protein
	kinase
ANGPTL2	: Angiopoietin like protein 2
ANOVA	: Analysis of variance
ARC	: Arcuate nucleus
ATMs	: Adipose tissue macrophages
BBB	: Blood Brain Barrier
BMI	: Body Mass Index
CART	: Cocaine- and amphetamine-regulated
	transcript
CCL2	: CC-chemokine ligand 2
CDC	: Centers for Disease Control and Prevention
CPT-1	: Carnitine palmitoyl transferase -1
CRH	: Cytokine receptor homology
CSF	: Cerebrospinal fluid
Ct	: Cycle threshold
CXCL5	: CXC-chemokine ligand 5
cyclic AMP	: Cyclic adenosine monophosphate

Abb.	Meaning
dNTPs	: Deoxy nucleoside triphosphatre
dUTP	: Deoxyuridine triphosphatre
DXA	: Dual energy x-ray absorptiometry
EDTA	: Ethyl diamine tetra-acetic acid
EGIR	: European Group for the Study of Insulin
	Resistance
ELISA	: Enzyme linked immunosorbent assay
FBG	: Fasting blood glucose
FFAs	: Free fatty acids
FN III	: Fibronectin type I
FTO	: Fat mass and obesity associated gene
GLUT4	: Glucose transporter
gp130	: Glycoprotein 130
GPR120	: G-protein coupled receptor 120
HbA1c	: Glycated Hemoglobin
HDL	: High-density lipoprotein
HNF	: Hepatocyte nuclear factor
HOMA-IR	: Homeostasis model assessment of insulin
	resistance
HS	: Highly significant
IDF	: International Diabetes Federation
IFG	: Impaired fasting glycemia

IGD : Immunoglobulin like domain	
IGR : Impaired glucose tolerance	
IL : Interleukin	
IL-1Ra : IL-1 receptor antagonist	
IL-6r : IL-6 receptor	
IPF : Insulin promoter factor	
IR : Insulin resistance	
IRS : Insulin receptor substrate	
JAK2 : Janus kinase 2	
Kb : kilo bases	
KDa Kilodalton	
LEP : Leptin	
LR : Leptin receptor	
LRcyto : Leptin receptor cytoplasmic tail	
LRecto : Leptin receptor extracellular part	
LRTM : Leptin receptor transmembrane part	
LVH : left ventricular hypertrophy	
MC-4R : Melanocortin-4 receptor	
MCP-1 : Monocyte chemoattractant protein-1	
MetS : Metabolic syndrome	
MODY : Maturity onset diabetes of the young	
NAMPT : Nicotinamide phosphoribosyl transferase	

Abb.		Meaning
NCEP- ATPIII	:	National Cholesterol Education Program -
		Adult Treatment Panel III
NF-κB	:	Nuclear factor kappa B
NHLBI	:	National Heart Lung and Blood Institute
NPY	:	Neuropeptide Y
NPY-R	:	Neuropeptide Y receptor
NS	:	Non significant
nt	:	Nucleotide
NTD	:	N-terminal domain
ob gene	:	Obese gene
OBR	:	Obese gene receptor
OR	:	Odds ratio
PAI-1	:	Plasminogen activator inhibitor type 1
PBS	:	Phosphate buffer saline
PCR	:	Polymerase chain reaction
PGE2	:	Postaglandin E2
PI3K	:	Phosphatidylinositol-3'-kinase
PMN	:	Polymorphonuclear leukocytes
POMC	:	Pro-opiomelanocortin
PPAR γ	:	Peroxisome proliferator activated receptor
		gamma

: Retinol-binding protein 4

RBP4

Abb.		Meaning
RNA	:	Ribonucleic acid
Rpm	:	Revolutions per minute
S		Significant
S.insulin	:	Serum insulin
SCD	:	Stearoyl-CoA desaturase
SD	:	Standard deviation
SFRP	:	Secreted frizzled related protein
SNA	:	Sympathetic nerve activity
SNP	:	Single nucleotide polymorphism
SOCS	:	Suppressor of cytokine signaling
SPSS	:	Statistical package for Social Science
STAT3	:	Signal transducer and activator of transcription
T2DM	:	Type 2 diabetes mellitus
TE buffer	:	TRIS-EDTA buffer
TGFβ	:	Transforming growth factor beta
TNF	:	Tumour necrosis factor
Tyr	:	Tyrosine
WAT	:	White adipose tissue
WC	:	Waist circumference
WHO	:	The World Health Organization
X^2	:	Chi-Square test
α-MSH	:	Alpha-melanocyte stimulating hormone

List of Tables

Tables No.	Title	Page No.
1	The international classification of adults	6
	according to BMI.	
2	Definitions of metabolic syndrome	11
	according to the NCEP-ATP III, IDF, AHA,	
	WHO, and EGIR criteria.	
3	Adipokines increased and decreased in	29
	obesity and/or diabetes.	
4	Effects of leptin on the glucose-insulin	48
	metabolism.	
5	The PCR reaction mix.	68
6	Thermal cycler programming for	68
	amplification and genotyping.	
7	Comparison between the three groups as	73
	regards weight and BMI.	
8	Comparison between the three groups as	75
	regards FBG and 2hpp blood glucose.	
9	Comparison between the three groups as	76
	regards serum insulin and HOMA-IR.	
10	Comparison between groups regarding	77
	presence of insulin resistance.	

🕏 List of Tables 🗷

No. 11 Comparis	on between the three groups as	No.		
11 Comparis				
		79		
regards L	EP -2548G>A genotypes.			
12 Comparis	on between the three groups as	79		
regards L	EP -2548G>A alleles.			
13 Comparis	on between the three groups as	80		
regards C	for G allele and Ct for A allele.			
14 Correlation	n between BMI and FBG, 2hpp	81		
serum glu	cose, serum insulin, and HOMA-			
IR amon	g whole sample and among the			
three grou	ps separately.			
15 Association	on of GG and GA/AA genotypes	82		
with anth	ropometric measures in the whole			
sample.				
16 Association	on of GG and GA/AA genotypes	82		
with glyc	emic control indicators (FBG and			
2hpp bloc	2hpp blood glucose), S.insulin, and HOMA-			
IR across	the whole sample.			
17 Correlation	n between Ct for (G&A alleles)	83		
and anth	ropometric measures, glycemic			
control in	ndicators (FBG and 2hpp blood			
glucose),	S.insulin, and HOMA-IR across			
the whole	sample.			

🕏 List of Tables 🗷

Tables	Title	Page		
No.	Tiue			
18	Correlation between Ct for (G&A alleles)	85		
	and anthropometric measures, glycemic			
	control indicators (FBG and 2hpp blood			
	glucose), S.insulin, and HOMA-IR across			
	non obese non diabetics.			
19	Correlation between Ct for (G&A alleles)	86		
	and anthropometric measures, glycemic			
	control indicators (FBG and 2hpp blood			
	glucose), S.insulin, and HOMA-IR across			
	obese non diabetics.			
20	Correlation between Ct for (G&A alleles)	87		
	and anthropometric measures, glycemic			
	control indicators (FBG and 2hpp blood			
	glucose), S.insulin, and HOMA-IR among			
	obese diabetics.			
21	Comparison between those with and without	88		
	IR regarding Weight, BMI, Ct for (G&A			
	alleles), S.insulin and HOMA IR among the			
	obese diabetic group.			

List of Figures

Figures No.	Title	
		No.
1	Obesity health consequences.	9
2	Signal transduction and insulin action.	19
3	Alternatively activated macrophages	25
	protect against obesity and insulin	
	resistance.	
4	Comparison between lean and obese	27
	adipose tissue in immune cells infiltration	
	and adipokine secretion.	
5	Possible role played by IL-6 in the shift	33
	from acute to chronic inflammation.	
6	Leptin Molecule.	35
7	Leptin hypothalamic signals in Molecular	37
	control of energy homeostasis.	
8	Systemic leptin function.	38
9	Leptin Receptor isoforms.	41
10	Structure of leptin receptor.	43
11	Leptin-mediated signaling.	45
12	Schematic model of leptin receptor signal	47
	transduction pathways.	
13	An example of an amplification curve.	69

🕏 List of Figures 🗷

Figures No.	Title			
14	Comparison between the three groups as regards BMI.	74		
15	Comparison between the three groups as regards serum insulin, and HOMA-IR.	76		
16	Comparison between the three groups regarding presence of insulin resistant individuals.	77		