INVESTIGATION OF CAR PARK VENTILATION SYSTEM PERFORMANCE

By

Mohamed Salah Abdel Maboud Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE In Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

INVESTIGATION OF CAR PARK VENTILATION SYSTEM PERFORMANCE

By

Mohamed Salah Abdel Maboud Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

> MASTER OF SCIENCE In Mechanical Power Engineering

> > Under Supervision of

Prof. Dr. Essam E. Khalil

Professor of Mechanical Power Engineering Faculty of Engineering Cairo University

Prof. Dr. Ahmed Ahmed Medhat

Professor of Mechanical Power Engineering Housing and Building National Research Center

Dr. Esmail Mohamed El-Bialy

Assistant Professor of Mechanical Power Engineering Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

INVESTIGATION OF CAR PARK VENTILATION SYSTEM PERFORMANCE

By

Mohamed Salah Abdel Maboud Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In Mechanical Power Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

DEDICATION

This work is dedicated to Prof. Dr. Essam E. Khalil who has had an important role in the completion of this thesis. In simple words you have our sincere thanks and appreciation for helping me and encouraging me throughout my research.

ABSTRACT

With the efforts to release the overcrowding and traffic pressure in the Cairo Festival City (CFC), an underground multistory car parking at Cairo Festival City (CFC) is being built.

According to the Egyptian code of garages recommends that, for the underground car parking, the CO concentration shouldn't exceed 50 ppm in the normal operating case and 100 ppm in the most peak case.

The main objective of this thesis is to investigate the air flow and velocity profile of jet fans system in an underground car parking by using computational analysis and compare the results with other different jet fans configurations.

Jet fans is used to enhance air circulation in an enclosed space like underground car parking because of vehicle emissions such as CO and CO₂ from exhaust. It is also applied to dilute the air and then extract out the smoke or CO₂ product of fire to allow evacuation and for fire brigade to take action. An underground car parking is modeled in proprietary Computational Fluid Dynamics (CFD) software to investigate only the air ventilation pattern and effectiveness of dilution with number of jet fans in operation in the same enclosed car parking.

Commercial package of ANSYS FLUENT CFD is employed to simulate numerically three operating cases, Results show that the concentration levels of CO in the car parking, it is also shows that the air distribution scheme produced temperatures and velocities in the car parking.

The first case: the car park ventilation using 12 jet fans. It was found that the velocity of the air inside the car park and air distribution be somewhat weak, which does not provide good ventilation.

The second case: the car park ventilation using 18 jet fans. It was found that the velocity of the air inside the car park and air distribution be good, which is provide good ventilation.

The third case: the car park ventilation using 24 jet fans. It was found that the velocity of the air inside the car park and air distribution be quite large, which does not provide good ventilation.

ACKNOWLEDGEMENT

First of all, thanks to ALLAH, who gives me the strength, courage and power to achieve this work. I ask ALLAH to accept this work and make it sincere for the pleasure of ALLAH.

I would like to express my sincere appreciation and infinite thanks to

Prof. Dr. Essam E. Khalil who gave me a great scientific support and guidance to make a progress in my research. Besides, having severe admiration of his gigantic experience and unlimited co-operation and efforts of helping me to introduce this research in the best way.

I also want to extend my deepest gratitude to **Prof. Dr. Ahmed Medhat**, for his kind and invaluable guidance throughout my research.

Special thanks to **Dr. Esmail El-Bialy** for his patience, guidance, valuable advices and kind support throughout the preparation of this thesis.

Finally, Thanks also go to my family, friends and colleagues for their continuous encouragement, support and care during the whole period.

TABLE OF CONTENTS

DEDICATION	i
ACKNOWLEDGEMENT	iii
LIST OF TABLES	vii
LIST OF FIGURES	vii
LIST OF SYMBOLS AND ABBREVIATIONS	xii
CHAPTER (1): INTRODUCTION	1
1.1 Background	1
1.2 Ventilation	1
1.2.1 Carbon Monoxide	1
1.2.2 Ventilation rate	3
1.2.3 Air Distribution	5
1.3 Smoke Extraction	7
1.3.1 Definition of Smoke	7
1.3.2 Historical background	9
1.3.3 Egyptian Code requirements	10
1.4 Computational Fluid Dynamics	10
1.4.1 Importance of using computational fluid dynamics	11
1.4.2 Validation and accuracy of CFD simulations	12
1.5 Present Work	12
1.5.1 Project description	12
1.5.2 HVAC and smoke extraction system description	14
1.5.3 Scope of this thesis	16
CHAPTER (2): LITERATURE REVIEW	17
2.1 General	17
2.2 The work of Papakonstantinou et al (2003)	17
2.3 The work of M.Y. Chan and W.K. Chow (2004)	20
2.4 The work of Domingo et al (2010)	21
2.5 The work of T.T. Chow, Zhang Lin, Wei Bai (2006)	28
2.6 Zhang Lin et al (2006)	31
2.7 The work of Viegas (2010)	34
2.8 The work of Khalil and Shady (2012)	39
CHAPTER (3): GOVERNING EQUATIONS	45
3.1 General Conservation Equation	45
3.1.1 Mass Conservation	45
3.1.2 Momentum Conservation	46

	3.1.3 Energy Equation	. 47
	3.1.4 Species transport	.48
	3.1.5 Equation of state	.48
	3.2 Turbulence modeling	.49
	3.2.1 Reynolds averaged equations	.49
	3.2.2 k-ε model	.51
	3.2.3 Realizable k-ε model	.53
	3.3 Near Wall treatment	.55
	3.3.1 Enhanced wall treatment in FLUENT	.56
	3.4 Finite volume Method	.59
	3.5 Solution algorithm	.59
CF	IAPTER (4): PRESENT INVESTIGATION	.61
	4.1 Validation	.61
	4.2 Computational domain	. 63
	4.3 Modeling exhaust emissions	.66
	4.4 Grid generation	.67
	4.5 Grid quality criteria	. 69
	4.5.1 Orthogonal quality	. 69
	4.5.2 Aspect ratio	. 70
	4.6 Grid Independence Study	. 70
	4.6.1 Qualitative Assessment	.71
	4.7 Simulation Cases	.73
	4.7.1 Investigation cases (Three cases)	.73
	4.7.2 Optimization cases (Three cases)	.73
Cŀ	IAPTER (5): RESULTS AND DISCUSSION	.74
	5.1 Case 1 (arrangement of 12 operating jet fans)	.74
	5.1.1 Velocity distributions	.74
	5.1.2 Temperature distributions	.77
	5.1.3 CO mass fraction distributions	. 79
	5.2 Case 2 (arrangement of 18 operating jet fans)	.81
	5.2.1 Velocity distributions	.81
	5.2.2 Temperature distributions	.84
	5.1.3 CO mass fraction distributions	.86
	5.3 Case 3 (arrangement of 24 operating jet fans)	.88
	5.3.1 Velocity distributions	.88
	5.3.2 Temperature distributions	.91

5.4 Discussion of the results		5.3.3 CO mass fraction distributions	93
5.6 Velocity distribution		5.4 Discussion of the results	95
5.7 Temperature distribution		5.5 Carbon Monoxide distribution	95
CHAPTER (6): CONCLUSIONS AND SUGGESTED FUTURE WORK 96 6.1 Conclusions 96 6.2 Suggested Future Work 96		5.6 Velocity distribution	95
6.1 Conclusions		5.7 Temperature distribution	95
6.2 Suggested Future Work96	С	HAPTER (6): CONCLUSIONS AND SUGGESTED FUTURE WORK	96
		6.1 Conclusions	96
REFERENCES97		6.2 Suggested Future Work	96
	R	EFERENCES	97

LIST OF TABLES

able 1.1: Summary of U.S. and international standards [11]	4
Table 1.2: Summary of field testing results for seven U.S. parking [11]	5
Table 1.3: Comparison between experiments and CFD numerical simulations [25]	11
Table 1.4: Advantages of CFD over experiments [25]	12
Table 1.5: Description of car parking	16
Table 2.1: Summary of results of the six car parks [27]	20
Table 2.2: Simulations carried out by khalil and Shady [32]	40
Table 4.1: Summary of the simulation cases	73
LIST OF FIGURES	
Figure 1.1: Carbon Monoxide emissions' sources in New York, (2011) [2]	2
Figure 1.2: Mixing Ventilation [12]	6
Figure 1.3 Displacement ventilation [12]	6
Figure 1.4: Jet fans system in an underground car parking	7
Figure 1.5: Smoke layer [14]	8
Figure 1.6: Impact of smoke on visibility [14]	9
Figure 1.7: Plan View of CFC car parking garage	13
Figure 1.8: Isometric view of CFC car parking garage	13
Figure 1.9: Location of supply, Jet and exhaust fans in car parking are	14
Figure 1.10: Air distribution scheme used in car parking area	15
Figure 2.1: CO concentration at "exit site" with ventilation [26]	18
Figure 2.2: CO concentration at "inside site" without ventilation [26]	18
Figure 2.3: CO concentration - "exit site" with ventilation [26]	19
Figure 2.4: CO concentration at "inside site" without ventilation [26]	16
Figure 2.5: A: Temperature distribution when using slot diffusers, left is upper level, right is lower	21
level [28]	

Figure 2.5: B: NOx concentration distribution when using slot diffusers, left is upper level, right is lower level [28]	22
Figure 2.5: C: Relative humidity distribution when using slot diffusers, left is upper level, right is lower level [28]	22
Figure 2.6: A: Temperature distribution when using jet nozzles, left is upper level, right is lower	23
level [28]	
Figure 2.6: B: NOx concentration distribution when using jet nozzles, left is upper level, right is lower level [28]	23
Figure 2.6: C: Relative humidity distribution when using jet nozzles, left is upper level, right is lower level [28]	24
Figure 2.7 - A: Temperature distribution when using swirl diffusers, left is upper level, right is lower level [28]	24
Figure 2.7 - B: NOx concentration distribution when using swirl diffusers, left is upper level, right is lower level [28]	25
Figure 2.7 - C: Relative humidity distribution when using swirl diffusers, left is upper level, right is lower level [28]	25
Figure 2.8: Distribution of temperature field showing the vertical stratification in case 2A.	26
(A) Time = 10 min, (B) Time = 6 min [28].	
Figure 2.9: Distribution of temperature field showing the vertical stratification in case 2B.	27
(A) Time = 10 min , (B) time = 6 min [28].	
Figure 2.10: Temperature profile, time = 10 min, case 2C [28]	27
Figure 2.11:NO2 concentration at the ground level for low-density traffic. (a) Scheme 1; $z = 0.8$ m. (b) Scheme 1; $z = 1.6$ m. (c) Scheme 2; $z = 0.8$ m. (d) Scheme 2; $z = 1.6$ m [29]	29
Figure 2.12: NO2 concentration at the ground level for high-density traffic. (a) Scheme 1; $z = 0.8$ m.	30
(b) Scheme 1; z= 1.6 m. (c) Scheme 2; z = 0.8 m. (d) Scheme 2; z = 1.6 m [29]	
Figure 2.13: 3d view of the public transport interchange and the mesh [30]	31
Figure 2.14 - NO2 distribution ($\mu g/m3$) with Displacement ventilation [30]	32
Figure 2.15 - NO2 distribution (μ g/m3) using the proposed system [30]	32
Figure 2.16 - CO distribution ($\mu g/m3$) with Displacement ventilation [30]	33
Figure 2.17 - CO distribution at (µg/m3) using the proposed system [30]	33
Figure 2.18: Calculation domains and placement of the jet fans [dimensions in m] [31]	34
Figure 2.19- Horizontal cross-section at $z = 2.01$ m, a: distribution of CO concentration;	35
b: distribution of velocity [31]	
Figure 2.20 - x- velocity and temperature for simulations I91 and I93 at $(y; z) = (10.00; 2.01)$ [31].	36
Figure 2.21 - x-velocity and temperature for simulations I93 and I95 at $(y; z) = (10.00; 2.01)$ [31].	36

Figure 2.22 - Horizontal cross-section at $z = 2.01$ m for simulations 196 and 197 ((a) temperature distribution; (b) Velocity distribution) [31]	37
Figure 2.23 - Horizontal cross-section at $z = 2.01$ m for simulations I107 and I110 ((a) temperature distribution; (b) velocity distribution) [31]	38
Figure 2.24: Horizontal cross-section at $z = 2.01$ m for simulation I119 ((a) temperature distribution; (b) velocity distribution) [31]	39
Figure 2.25: Car park used by Khalil and Shady [32]	40
Figure 2.26: Visibility contours for case 1 [32]	41
Figure 2.27: Visibility contours for case 2 [32]	41
Figure 2.28: Visibility contours for case 3 [32]	41
Figure 2.29: Visibility contours for case 4 [32]	41
Figure 2.30: Visibility contours for case 5 [32]	41
Figure 2.31: Visibility contours for case 6 [32]	41
Figure 2.32: Visibility contours for case 7 [32]	42
Figure 2.33: Visibility contours for case 8 [32]	42
Figure 2.34: Visibility contours for case 9 [32]	42
Figure 2.35: Visibility contours for case 10 [32]	42
Figure 2.36: U-velocity distribution for case 1 [32]	42
Figure 2.37: U-velocity distribution for case 2 [32]	42
Figure 2.38: U-velocity distribution for case 3 [32]	43
Figure 2.39: U-velocity distribution for case 4 [32]	43
Figure 2.40: U-velocity distribution for case 5 [32]	43
Figure 2.41: U-velocity distribution for case 6 [32]	43
Figure 2.42: U-Velocity distribution for case 7 [32]	43
Figure 2.43: U-velocity distribution for case 8 [32]	43
Figure 2.44: U-velocity distribution for case 9 [32]	44
Figure 2.45: U-velocity distribution for case 10 [32]	44
Figure 3.1: Boundary layer sub-divisions [33]	55
Figure 3.2: Different near wall treatment approaches [33]	56
Figure 3.3: Segregated solver algorithm	60
Figure 4.1: Computational domain used by Dong-Hee Kim, Mridul Gautam, and Dinesh Gera [37]	61
Figure 4.2: Grid of the validation case	62

Gautam, and Dinesh Gera [37]	62
Figure 4.4: 3D model for the car parking area.	63
Figure 4.5: The computational domain showing Supply and exhaust air Fans	64
Figure 4.6: The computational domain showing Co2 outlets	64
Figure 4.7: The computational domain showing Co2 outlets	65
Figure 4.8: The computational domain showing Jet Fans	65
Figure 4.9: Screen shot-01 for the generated grid	68
Figure 4.10: Grid details at the exhaust port	68
Figure 4.11: The Vectors Used to Compute Orthogonal Quality [45]	69
Figure 4.12: Calculating the Aspect Ratio for a Unit Cube	70
Figure 4.13: Velocity distribution for the 2.5 Million grid at $z = 4.5$.m	71
Figure 4.14: Velocity distribution for the 10.5 Million grid at $z = 4.5$ m	71
Figure 4.15: Velocity distribution for the 15.5 Million grid at $z = 4.5$ m	72
Figure 4.16: Velocity distribution for the 20.5 Million grid at $z=4.5\ m$	72
Figure 5.1: Running jet fans in case 1	74
Figure 5.2: Velocity distribution for case 1 at $z = 4.5$ m	75
Figure 5.3: Velocity distribution for case 1 at $z = 3.5$ m	75
Figure 5.4: Velocity distribution for case 1 at $z = 2.5$ m	76
Figure 5.5: Velocity distribution for case 1 at $z = 1.5$ m	76
Figure 5.6: Temperature distribution for case 1 at $z = 4.5$ m	77
Figure 5.7: Temperature distribution for case 1 at $z = 3.5$ m	77
Figure 5.8: Temperature distribution for case 1 at $z = 2.5$ m	78
Figure 5.9: Temperature distribution for case 1 at $z = 1.5$ m	78
Figure 5.10: CO mass fraction distribution for case 1 at $z = 4.5$ m	79
Figure 5.11: CO mass fraction distribution for case 1 at $z = 3.5$ m	79
Figure 5.12: CO mass fraction distribution for case 1 at $z = 2.5$ m	80
Figure 5.13: CO mass fraction distribution for case 1 at $z = 1.5$ m	80
Figure 5.14: Running jet fans in case 2	81
Figure 5.15: Velocity distribution for case 2 at $z = 4.5$ m	82
Figure 5.16: Velocity distribution for case 2 at $z = 3.5$ m	82
Figure 5.17: Velocity distribution for case 2 at $z = 2.5$ m	83

Figure 5.18: Velocity distribution for case 2 at $z = 1.5$ m	83
Figure 5.19: Temperature distribution for case 2 at $z = 4.5$ m	84
Figure 5.20: Temperature distribution for case 2 at $z = 3.5$ m	84
Figure 5.21: Temperature distribution for case 2 at $z = 2.5$ m	85
Figure 5.22: Temperature distribution for case 2 at $z = 1.5$ m	85
Figure 5.23: CO mass fraction distribution for case 2 at $z = 4.5$ m	86
Figure 5.24: CO mass fraction distribution for case 2 at $z = 3.5$ m	86
Figure 5.25: CO mass fraction distribution for case 2 at $z = 2.5$ m.	87
Figure 5.26: CO mass fraction distribution for case 2 at $z = 1.5$ m.	87
Figure 5.27: Running jet fans in case 3.	88
Figure 5.28: Velocity distribution for case 3 at $z = 4.5$ m	89
Figure 5.29: Velocity distribution for case 3 at $z = 3.5$ m	89
Figure 5.30: Velocity distribution for case 3 at $z = 2.5$ m	90
Figure 5.31: Velocity distribution for case 3 at $z = 1.5$ m	90
Figure 5.32: Temperature distribution for case 3 at $z = 4.5$ m	91
Figure 5.33: Temperature distribution for case 3 at $z = 3.5$ m	91
Figure 5.34: Temperature distribution for case 3 at $z = 2.5$ m	92
Figure 5.35: Temperature distribution for case 3 at $z = 1.5$ m	92
Figure 5.36: CO mass fraction distribution for case 3 at $z = 4.5$ m	93
Figure 5.37: CO mass fraction distribution for case 3 at $z = 3.5$ m.	93
Figure 5.38: CO mass fraction distribution for case 3 at $z = 2.5$ m	94
Figure 5.30: CO mass fraction distribution for case 3 at $z = 1.5$ m	Q/

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description

ACH Air changes per hour

ACGIH American Conference of Industrial Governmental Hygienists

BOCA Building Officials Code Administrators International

CFD Computational fluid dynamics

CPU Central processing unit

EPA Environmental protection agency

HVAC Heating ventilation and air conditioning

ICBO International Conference of Building Officials

NFPA National fire protection agency

OSHA Occupational Safety and Health Administration, USA

ppm Particle per million

RANS Reynolds averaged Navier stokes equations

SBCCI Southern Building Code Congress International

SIMPLE Semi-implicit pressure linked equations algorithm