PRODUCTION OF SOME NATURAL BIOACTIVE COMPOUNDS AND THEIR APPLICATION IN FOOD PRODUCTS

By

EMAN EL-SAYED IBRAHIM YOUSEF

B.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2006 M.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2010

A thesis submitted in partial fulfillment Of

The requirements for the degree of

DOCTOR OF PHILIOSOPHY in

Agricultural Sciences (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

PRODUCTION OF SOME NATURAL BIOACTIVE COMPOUNDS AND THEIR APPLICATION IN FOOD PRODUCTS

By

EMAN EL-SAYED IBRAHIM YOUSEF

B.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2006 M.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2010

This thesis for Ph.D degree has been approved by:
Dr. Adel Zaki M. Badee Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Cairo University
Dr. Atef Anwer Kouth Abo Arab Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University
Dr. Ibrahim Rizk Sayed Ahmed Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University
Dr. Nagwa Mousa Hassen Rasmy Prof. Emeritus of Food Science and Technology , Faculty of Agriculture, Ain Shams University

Date of Examination: / / 2017

PRODUCTION OF SOME NATURAL BIOACTIVE COMPOUNDS AND THEIR APPLICATION IN FOOD PRODUCTS

By

EMAN EL-SAYED IBRAHIM YOUSEF

B.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2006 M.Sc. Agric. Sci. (Food Technology), Ain Shams University, 2010

Under the supervision of:

Dr. Nagwa Mousa Hassen Rasmy

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Ibrahim Rizk Sayed Ahmed

Prof. Emeritus of Food Science and Technology, Faculty of Agriculture, Ain Shams University

Dr. Hanan Mohamed Abdo Al-Sayed

Prof. of Food Science and Technology, Faculty of Agriculture, Ain Shams University

ACKNOWLEDGMENT

All praises are due to Allah, who blessed me with kind professors and colleagues, and gave me the support to produce this thesis.

I wish to extend my deepest appreciation and sincere gratitude to **Prof. Dr. Nagwa, M.H. Rasmy,** Professor of Food Science and Technology,Food Sci Dep., Faculty of Agriculture, Ain Shams University, for the kind attention and greater help provided for the accomplishment of this work and for her efforts, supervising the research, writing the manuscript and encouraging me through this course.It is difficult to express in words my deep respect to her.

Deep thanks and sincere appreciation to **Prof. Dr. I.R. Sayed. Ahmed**, Professor of Food Science and technology, Food Sci. Dep.,
Faculty of Agriculture, Ain Shams University, for his direct supervision,
careful guidance, great help in the practical work and his unlimited help
during preparing this thesis. It is difficult to express in words my deep
respect to him

Thanks are also extended to **Prof. Dr. Hanan, M.A. Al-sayed**, Professor of Food Science and technology, Food Sci. Dep., Faculty of Agriculture, Ain Shams University for her valuable guidance, willing cooperation and valuable assistance throughout this study.

I would like to thank all the stuff members of Food Science and Technology Department Faculty of Agriculture Ain Shams University.

I wish to find the words that can help me to express my gratefulness thanks, deepest gratitude and the sincere appreciation to my parents and my brothers and my husband for their help and sincere support

CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
1.INTRODUCTION
2. REVIEW OF LITERATURE
2.1 Bioactive compounds
2.2. Extraction of bioactive compounds
2.3. Antioxidant and Antimicrobial activity of bioactive
Compounds
2.4. Sources of bioactive compounds
2.4.1.Mango
2.4.2. Pomegranate
2.4.3. Prickly –pear catacus
2.4.4. Pisium sativium
2.4.5. Cantaloupe
2.5.Application of peel extracts
2.5.1.Bakery products
2.5.2.Thermal stability
3.MATERIALS AND METHODS
3.1.Materials
3.1.1.Plant materials
3.1.2.Microbial strains
3.1.3.Cup cake ingredient
3.1.4.Sunflower oil
3.1.5. Chemicals
3.1.6.Culture media
3.1.6.1.Nutrient agar medium
3.1.6.2.Potato dextrose agar medium
3.1.6.3. Violet bile agar medium

	Page
3.1.6.4.Bismuth sulphite agar medium	45
3.1.6.5.Baird-Parker agar medium	46
3.2.Methods	46
3.2.1.Thecnological methods	46
3.2.1.1. Preparation of plant peel extracts	46
3.2.1.2.Extraction of bioactive compounds from fruit and	46
vegetable peels	
3.2.1.3. Formula of cup cake and processing	47
3.2.1.4.Extraction of lipids from cup cake	47
3.2.1.5.Deep frying	48
3.2.2. Analytical methods	48
3.2.2.1.Proximate composition of fruit and vegetable peels	48
3.2.2.2.Total phenolics content of peel extracts (TP)	48
3.2.2.3. Total flavonoids content of peel extracts (TF)	49
3.2.2.4. Antioxidant activity of peels extracts	49
3.2.2.4.1.DPPH radical scavenging activity	49
3.2.2.4.2.ABTS cation radical – scavenging assay	50
3.2.2.4.3.Ferric – reducing antioxidant power assay(FRAP)	50
3.2.2.5. Analysis of phenolic compounds with HPLC	50
3.2.2.6. Antimicrobial activity of different peels extracts	51
3.2.2.7.Chemical, antimicrobial and sensory evaluation of cup	52
cake	
3.2.2.7.1.Determination of peroxide value (PV)	52
3.2.2.7.2. Determination of Thiobarabituric acid value (TBA)	52
3.2.2.7.3.Determination of Free fatty acid value (AV)	52
3.2.2.7.4.Microbilogical analysis of cup cake	52
3.2.2.7.5.Sensory evaluation of cup cake	53
3.2.2.8. Determination of oxidation of frying oil	53
3.2.2.9.Statistical analysis	53

	Page
4.RESULTS AND DISCUSSION	54
4.1.Proximate chemical composition of the selected fruit and	54
vegetable peels	
4.2.Extraction and evaluation of bioactive compound from	55
fruit and vegetable peels	
4.2.1.Extraction yield	56
4.2.2. Total phenolic and flavonoid contents of different	58
peels extracts	
4.2.3. Antioxidant activity of different peels extracts	61
4.2.4. Correlation between antioxidant activity, total phenolic	65
and flavonoid contents	
4.2.5.Effect of extraction time and temperature on antioxidant	67
activity of different peel extracts	
4.2.6.Identefication and quantification of phenolic compounds	72
of different Peel extracts	
4.2.7. Antimicrobial activity of different peel extracts	78
4.3. Application of different tested peel extracts in cup cake	90
4.3.1.Effect of different peel extracts on chemical quality of	91
cup cake	
4.3.1.1.Peroxide value of cup cake samples during storage	91
4.3.1.2. Acid value of cup cake samples during storage	95
4.3.1.3. Thiobarbitoric acid (TBA) of cup cake samples	
during storage	100
4.3.1.4.Effect of different peel extracts on microbiological	
quality of cup cakes	105
4.3.1.5. Sensory evaluation of cup cake samples	114
4.3.2.Efficacy of different peel extracts in suppressing oxidation	
of sunflower of sunflower oil used for deep frying	117
4.3.2.1.Peroxide value (PV) of sunflower oil during frying	
cycles	117

	Page
4.3.2.2.Acid value (AV) of sunflower oil during frying	122
cycles	
4.3.2.3. Thiobarabitoric acid (TBA) of sunflower oil during	
frying cycles	126
5. SUMMARY AND CONCLUSIONS	132
6. REFERENCES	138
ARARIC SIIMMARV	

LIST OF TABLES

No.		Page
1	Proximate chemical composition (g/100g) of some fresh	
	fruit and vegetable peels	55
2	Yield(%w/w) of different solvent extracts from fruit and	
	vegetable peels	57
3	Total phenolic content (mg gallic acid/g) of different	
	extracts from peel of some fruits and vegetables	59
4	Total flavoniod content (mg catachine/g) of different	
	extracts from peels of some fruits and vegetables	61
5	Antioxidant activity of different solvent extracts obtained	
	from peels of some fruits and vegetable	63
6	Correlation coefficient between antioxidant activity and	
	total phenolic & flavoniods contents of different peel	
	extracts	65
7	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of different peels extracts	68
8	Quantity of phenolic compounds ($\mu g/g$) identified by HPLC	
	analysis of different peel extract	77
9	Antimicrobial activity of different extracts obtained from	
	peels of some fruits and vegetable	79
10	Peroxide value (mEq peroxide /Kg oil) of cup cake	
	containing different levels of peels extracts during storage	
	at room temperature for 21 days	92
11	Acid value (mg free fatty acid/g oil) of cup cake containing	
	different levels of peels extract during storage at room	
	temperature for 21 days	97
12	TBA (mg malonaldhyde/Kg oil) of cup cake containing	
	different levels of peels extract during storage at room	
	temperature for 21 days	101

No.		Page
13	Total bacterial count (log cfu/g sample) of cup cake samples as effected by addition of different levels of peel extract during storage at room temperature for 21 days	106
14	Yeasts and Molds (log cfu /g sample) of cup cake samples as effected by addition of different levels of peel extract	
	during storage at room temperature for 21 days	110
15	Sensory evaluation of cupcake containing different levels of	
	peels extracts	115
16	Peroxide value (mEq peroxide /Kg oil) of sunflower oil	
	containing different levels of different peel extract during	
	frying cycles	119
17	Acid value (mg FF /g oil) of sunflower oil containing	
	different levels of different peel extract during frying cycles	123
18	TBA (mg malonaldhyde /Kg oil) of sunflower oil	
	containing different levels of peels extract during frying	
	cycles	127

LIST OF FIGURES

Fig. No.		Page
1	Structures of stilbenes and lignin	10
2	Structures of flavonoids, phenolic acids and tannins	11
3-a	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of pomegranate peel extract	69
3-b	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of mango peel extract	69
3-с	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of prickly - pear peel extract	70
3-d	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of cantaloupe peel extract	70
3-е	Effect of extraction time and temperature on antioxidant	
	activity (ABTS assay) of pea peel extract	71
4	HPLC-Uv chromatograms of phenolic standrd mixture	73
5	HPLC -Uv chromatograms of phenolic compounds of	
	PoP extract	73
6	HPLC -Uv chromatograms of phenolic compounds of	
	MaP extract	74
7	HPLC -Uv chromatograms of phenolic compounds of	
	PrP extract.	74
8	HPLC -Uv chromatograms of phenolic compounds of	
	CaP extract	75
9	HPLC -Uv chromatograms of phenolic compounds of	
	PeP extract	75
10-a	Effect of different peels extracts on antimicrobial	
	activity of S.aureus	81
10-b	Effect of different peels extracts on antimicrobial	
	activity of S.entertidis	81
10-с	Effect of different peels extracts on antimicrobial	
	activity of <i>B.cereus</i>	82

Fig. No.		Page
10-d	Effect of different peels extracts on antimicrobial	82
	activity of <i>E.coli</i>	
10-е	Effect of different peels extracts on antimicrobial	83
	activity of <i>C.albicans</i>	
10-f	Effect of different peels extracts on antimicrobial	83
	activity of A.niger	
11-a	Antimicrobial effects of concentration (250 μg /ml) of	89
	PoP extract (a) and MaP extract on radial growth of	
	S.aureus	
11-b	Antimicrobial effects of concentration (250 μg /ml) of	89
	PoP extract (a) and MaP extract on radial growth of	
	S.entertidis	
11-c	Antimicrobial effects of concentration (250 μg /ml) of	89
	PoP extract (a) and MaP extract on radial growth of	
	B.cereus	
11-d	Antimicrobial effects of concentration (250 μg /ml) of	90
	PoP extract (a) and MaP extract on radial growth of	
	<i>E.coli</i>	
12	Antifungal effects of concentration (250 μg /ml) of PoP	90
	extract (a) and MaP extract on radial growth of	
	C.albicans and A.niger	
13-a	Peroxide value of cup cake containing pomegranate	93
	peel extract during storage at room temperature for 21	
	days	
13-b	Peroxide value of cup cake containing Mango peel	
	extract during storage at room temperature for 21 days	93
13-с	Peroxide value of cup cake containing prickly-pear peel	
	extract during storage at room temperature for 21 days	94
13-d	Peroxide value of cup cake containing cantaloupe peel	
	extract during storage at room temperature for 21 days	94

Fig. No.		Page
13-е	Peroxide value of cup cake containing pea peel extract	
	during storage at room temperature for 21 days	95
14-a	Acid value of cup cake containing pomegranate peel	
	extract during storage at room temperature for 21 days	98
14-b	Acid value of cup cake containing Mango peel extract	
	during storage at room temperature for 21 days	98
14-c	Acid value of cup cake containing prickly-pear peel	
	extract during storage at room temperature for 21 days	99
14-d	Acid value of cup cake containing cantaloupe peel	
	extract during storage at room temperature for 21 days	99
14-e	Acid value of cup cake containing pea peel extract	
	during storage at room temperature for 21 days	100
15-a	TBA of cup cake containing pomegranate peel extract	
	during storage at room temperature for 21 days	102
15-b	TBA of cup cake containing Mango peel extract during	
	storage at room temperature for 21 days	102
15-c	TBA of cup cake containing prickly-pear peel extract	
	during storage at room temperature for 21 days	103
15-d	TBA of cup cake containing cantaloupe peel extract	
	during storage at room temperature for 21 days	103
15-е	TBA of cup cake containing pea peel extract during	
	storage at room temperature for 21 days	104
16-a	Total bacterial count (log cfu /g sample) of cup cake	
	containing pomegranate peel extract during storage at	
	room temperature for 21 days	107
16-b	Total bacterial count (log cfu /g sample) of cup cake	
	containing Mango peel extract during storage at room	
	temperature for 21 days	107
16-c	Total bacterial count (log cfu /g sample) of cup cake	
	containing prickly-pear peel extract during storage at	
	room temperature for 21 days	108

Fig. No.		Page
16-d	Total bacterial count (log cfu /g sample) of cup cake	
	containing cantaloupe peel extract during storage at	
	room temperature for 21 days	108
16-e	Total bacterial count (log cfu /g sample) of cup cake	
	containing pea peel extract during storage at room	
	temperature for 21 days	109
17-a	Yeasts and molds (log cfu /g sample) of cup cake	
	containing pomegranate peel extract during storage at	
	room temperature for 21 days	111
17-b	Yeasts and molds (log cfu /g sample) of cup cake	
	containing Mango peel extract during storage at room	
	temperature for 21 days	111
17-c	Yeasts and molds (log cfu /g sample) of cup cake	
	containing prickly-pear peel extract during storage at	
	room temperature for 21 days	112
17-d	Yeasts and molds (log cfu /g sample) of cup cake	
	containing cantaloupe peel extract during storage at	
	room temperature for 21 days	112
17-e	Yeasts and molds (log cfu /g sample) of cup cake	
	containing pea peel extract during storage at room	
	temperature for 21 days	113
18-a	Peroxide value of sunflower oil containing pomegranate	
	Peel extract during frying cycles	120
18-b	Peroxide value of sunflower oil containing mango Peel	
	extract during frying cycles	120
18-c	Peroxide value of sunflower oil containing prickly-pear	
	Peel extract during frying cycles	121
18-d	Peroxide value of sunflower oil containing cantaloupe	
	extract during frying cycles	121
18-е	Peroxide value of sunflower oil containing pea Peel	
	extract during frying cycles	122

Fig. No.		Page
19-a	Acid value of sunflower oil containing pomegranate	
	Peel extract during frying cycles	124
19-b	Acid value of sunflower oil containing mango Peel	
	extract during frying cycles	124
19-с	Acid value of sunflower oil containing prickly-pear	
	Peel extract during frying cycles	125
19-d	Acid value of sunflower oil containing cantaloupe	
	extract during frying cycles	125
19-е	Acid value of sunflower oil containing pea Peel extract	
	during frying cycles	126
20-a	TBA value of sunflower oil containing pomegranate	
	Peel extract during frying cycles	128
20-b	TBA value of sunflower oil containing mango Peel	
	extract during frying cycles	128
20-с	TBA value of sunflower oil containing prickly-pear	
	Peel extract during frying cycles	129
20-d	TBA value of sunflower oil containing cantaloupe	
	extract during frying cycles	129
20-е	TBA value of sunflower oil containing pea Peel extract	
	during frying cycles	130