Innovative Chemical Sensors for the Assessment of Some Industrial Products and Hazardous Wastes

"Submitted for the degree of Master of Science As a partial fulfillment for requirements of the master of

Science"

Presented by

Amiyna -A- Abd Alhafith

Supervised by

Prof. Dr. Ayman Helmy Kamel

Professor of Analytical Chemistry, Chemistry
Department, Faculty of Science, Ain Shams University.

Dr.Amr Ali Mohamed

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University.

Chemistry Department

Faculty of Science

Ain Shams University

2017

Innovative Chemical Sensors for the Assessment of Some Industrial Products and Hazardous Wastes

Supervised by

Prof. Dr. Ayman Helmy Kamel

Professor of Analytical Chemistry, Chemistry Department
Faculty of Science, Ain Shams University

Dr.Amr Ali Mohamed

Lecturer of Inorganic Chemistry, Faculty of Science
Ain Shams University

Innovative Chemical Sensors for The Assessment of Some Industrial Products and Hazardous Wastes

By Amiyna -A- Abd Alhafith

Prof. Dr. Ayman Helmy Kamel......

Professor of Analytical Chemistry, Chemistry Department Faculty of Science, Ain Shams University

Dr. Amr Ali Mohamed

Lecturer of Inorganic Chemistry, Faculty of Science Ain Shams University

Head of Chemistry Department

Prof. Dr. Ibrahim H. Ali Badr

Acknowledgement

First of all, all gratitude is due to **ALLAH** for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to *Prof. Dr. Ayman Helmy Kamel, Professor of Analytical Chemistry,* for his supervision, continuous help,

encouragement throughout this work and great effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I am also grateful to *Dr. Amr Ali, Lecturer* of *Inorganic Chemistry, Faculty of Science -Ain Shams University,* for his guidance, continuous assistance and sincere supervision of this work.

Dedication

To my beloved Parents

To my Husband

To my Brothers

To my Sisters

And their Sons

Tit	le Page
List	of contentsa
List	of figures e
List	of tablesi
Abb	reviations k
Sun	nmary I
	Chapter (I):
	Introduction to Potentiometric Sensors
1.1	Significance and background 1
1.2	Principles of ISEs response
1.3	Origin of Potentiometric Response
	Selective Membrane 10
	Measuring of potentiometric selectivity coefficients
1.5	ISEs with a solid internal contact
1.6	Novel sensor designs
1.7	Conclusions and outlook

Page

Title

Chapter (II)
Automatic potentiometric systemfor quantification of three imidazole derivatives based on new polymeric PVC membrane sensors
2.1 Introduction
2.2 Experimental 42 2.2.1. Equipment 42 2.2.2. Reagents 42 2.2.3. Sensor fabrication and EMF measurement 43 2.2.4. Hydrodynamic measurement setup 44 2.2.5. Analytical application 45
2.3 Results and discussion462.3.1. Potentiometric characteristics of sensors462.3.2. Method validation542.3.2.1. Method linearity and detection limit542.3.2.2. Method Accuracy precision and Robustress562.3.2.3. Selectivity of the sensors612.3.3. Flow injection measurements662.3.4. Determination of imidazole in biological human fluids67
2.4 Conclusion
Chapter (III)
Potentiometric System for Rapid and Selective Quantification of Piperidine Based on Novel Plastic Membrane Sensors
3.1 Introduction 78

Title	Page	
3.2.1. Ir 3.2.2. N 3.2.3. S 3.2.4. Ir 3.2.5. A	Experimental	1 2 3 5 6
3.3. Resul	t and discussion8	
3.3.2. S 3.3.3. S 3.3.4. F 3.3.5. P	Membrane material	9 7 8 02
3.2 Conclus	sion 1	05
	Chapter (IV)	
Membr	ponse Characteristics of Lead –Selective ane Sensors Based on a Newly Synthesized noxaline Derivatives as a Neutral Carrier Ionophores	1
4.2 Materia 4.2.1. 4.2.2. 4.2.3. 4.2.4.	duction	13 13 14 15

Title		Page
		Lead assessment in biological fluids
4.3		s and discussion
	4.3.1.	Elucidation of ionophores structure 119
	4.3.2.	Sensors characteristics
	4.3.3.	Response of Neutral-Carrier Membranes 125
	4.3.4	Potentiometric selectivity 127
	4.3.5.	Flow injection
4.3.6. Analytical applications		
4.3.6.1 Determination of Pb+2 in biological fluids 133		
4.3.6.2 Determination of Pb in alloy containing lead		
		and tin
4.5	. Conclu	ısions

List of Figures

Figure No.	Title	Page
	Chapter 1	
	Introduction	
Fig. (1.1):	Schematic representation of a typica	1
	potentiometric cell	2
Fig. (1.2):	Schematic representation of the basic	2
	units of chemical sensor	3
Fig. (1.3):	Common polymer matrixes used to	
	prepare ion-selective electrode membranes	11
T) . (1 4)		, 1 1
Fig. (1.4):	Common plasticizers used for the preparation of ISE membranes	13
Fig. (1.5):	Comparison between conventional	
	ion-selective electrodes and solid contact ion-selective electrodes	20
Fig. (1.6):	Design of miniaturized potentiometric	
	devices with integrated all-solid-state	0.5
	electrodes	25
	Chapter (II)	
-	potentiometric system for quantific e imidazole derivatives based on ne	
	lymeric PVC membrane sensors	vv
Fig. (2.1):	Structure of the proposed electroactive ionophores for imidazole membrane	•
	sensors	40

-Chapter One	2	
Fig. (2.2):	Potentiometric response of imidazole membrane sensors using 0.05 molL ⁻¹ MES buffer (pH 5.5) towards	
	List of Figures	
Figure No.	Title Page	
Fig. (2.3):	Effect of plasticizer on the potentiometric response of Imidazole membrane sensors	
Fig. (2.4):	pH effect on the potentiometric response of imidazole membrane based sensors	
Fig. (2.5):	Time response of imidazole membrane based sensors	
Fig. (2.6):	Potential responses of: A) Imd/PMA based membrane sensor, B) Imd/TPB based membrane sensor, C) DB24C8 based membrane sensor towards varies cations	
Fig. (2.7):	Typical flow injection potentiometric signals of imidazole detector based on (Imd/PM) PVC membrane	
	Chapter (III)	
Batch and flow-through potentiometric system for rapid and selective quantification of piperidine based on novel plastic membrane sensors		

Fig. (3.1): FIA manifold for estimate Piperidine. A 0.01 M carrier Trisma buffer

	solution pH 7.0; loop sample 20 and flow rate 4.0 mL/min	•
Fig. (3.2):	Structure of the proposed electros ionophores for piperidine membra sensors	ane
	List of Figures	
Figure No	o. Title	Page
Fig. (3.3):	Calibration plot for piperidine membrane based sensors in 0.01 trisma buffer at pH = 7.0	
Fig.(3.4):	pH effect on the potentiometric resp of pipridine membrane based sens	
Fig.(3.5):	Time response of piperidine membrar based sensors	
Fig. (3.6):	Transient potentiometric signals of piperidine using (Pip/PMA), (Pip/F (Pip/TPB), and β-cyclodextrine/PV DOP based membrane detectors	PT), /C+
	Chapter (IV)	
Membrai	onse Characteristics of Lead-Sel ne Sensors Based on a Newly Syn oxaline Derivatives as Neutral C Ionophores	nthesized
Fig. (4.1):	Schematic route for the synthes	

-Chapter One _____

-Chapter One -

Fig. (4.2):	Calibration plot of sensors based on ionophores (I) and (II) in 0.01 M acetate buffer at pH=5121
Fig. (4.3):	Dynamic response times based membrane sensors towards different concentration levels of Pb ⁺²
Fig. (4.4):	Schematic representation of a neutral-carrier polymeric lead membrane based sensor
Fig. (4.5):	Flow injection potentiometric responses obtained using ionophore (I) membrane based sensor

List of Tables

Table No.	Title	Page

Chapter (II)

Automatic potentiometric system for quantification of three imidazole derivatives based on new polymeric PVC membrane sensors

polymeric PVC membrane sensors		
Гable (2.1):	Comparison of some potentiometric imidazole membrane sensors	
Table (2.2):	Potentiometric response characteristics of imidazole PVC membrane sensors 50	
Гable (2.3):	Potentiometric selectivity coefficients (Log K ^{pot} _{Imd,B}) of Imidazole PVC membrane sensors	
Гable (2.4):	Determination of imidazole in biological samples using Imidazole membrane based sensors	
Гable (2.5): <i>1</i>	Analysis of spiked urine samples by the proposed potentiometric and reference methods71	

Chapter (III)

rapid and selective quantification of piperdine based on novel plastic membrane sensors			
Table (3.1):	Potentiometric response characteristics of Piperidine membrane based sensors 92		
Table (3.2):	Potentiometric selectivity coefficients (Log K ^{pot} _{Pip+}) of Piperidine PVC membrane sensors		
Table (3.3):	Response characteristics of piperidine membrane based sensors under FI operation		
Table (3.4): I	Determination of piperidine using piperidine membrane based sensors		
	Chapter (IV)		
Response Characteristics of Lead-Selective Membrane Sensors Based on a Newly Synthesized Quinoxaline Derivatives as Neutral Carrier Ionophores			
Table (4.1):	Potentiometric response characteristics of Pb ⁺² membrane based sensors		
Table (4.2):	Potentiometric selectivity coefficients $(\log K_{Pb^{2+}, j})$ of Lead membrane sensors		
Table (4.3):	Response characteristic of ionophore (I) membrane based sensor under FI operation		