Genetic Variability of *Cryptosporidium*Isolates from Humans in Greater Cairo, Egypt

Thesis

Submitted for partial fulfillment of the M.D. degree in *Basic Medical Science (Medical Parasitology)*

By Mai Abd El-Sameaa Shehata (M.B.B.Ch., M.Sc.)

Assistant lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Adel Gamal El-Missiry

Professor of Medical Parasitology and Founder of Medical Research Center and Bilharizial Research, Faculty of Medicine, Ain Shams University

Prof. Dr. Abd El-Mageed Mohammed Kamal

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr. Laila Mohammed El Hoseiny Abd El-Hameed

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr. Ghada Abdel Rahman Saad

Assistant Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Medical Parasitology Department Faculty of Medicine Ain Shams University 2017

ACKNOWLEDGEMENT

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I wish to express my sincere gratitude and deep appreciation to **Prof. Dr. Adel Gamal El-Missiry,** Professor of Medical Parasitology and Founder of Medical Research Center and Bilharizial Research, Faculty of Medicine, Ain Shams University, for his kind help, sincere encouragement and constant guidance.

My deep thanks go to **Prof. Dr. Abd El-Mageed Mohammed Kamal**, Professor of Medical Parasitology, Faculty of Medicine, Ain Shams University, for his constant support.

No words can express my sincere gratitude and deep appreciation to **Prof. Dr. Laila Mohammed El Hoseiny Abd El-Hameed** Professor of Medical Parasitology, Faculty of medicine, Ain Shams University, for her precious advices and continuous guidance throughout the whole work.

My deep thanks go to **Dr. Ghada Abdel Rahman Saad**, Assistant Professor of Medical Parasitology, Faculty of Medicine, Ain Shams University, for her precious help.

A word of thanks must go to **Prof. Dr. Ayman Abdel Moamen El-Badry,** Professor of medical parasitology, Faculty of medicine, Cairo University, for his co-operative spirit and great help.

Special thanks go to **Dr. Yosra Ahmed Helmy**, Lecturer of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt and postdoctoral Researcher at Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio State, USA.

A word of thanks must go to **Dr. Essam Zaki,** PHD, University of Southern California, Biochemistry and Molecular Biology, USA, for his precious advices.

Last but not least, many thanks to all the members in Medical Parasitology Department, Faculty of Medicine, Ain Shams University, for their great support.

To my dearly beloved husband "Aziz"

To my soul "Zeina" and "Lara"

To my lovely family and friends

List of Contents

LIST OF CONTENTS

		Page
List of A	bbreviations	i
List of T	ables	iii
List of F	igures	iv
ABSTRA		vi
	ODUCTION	1
2. REVI	EW OF LITERATURE	3
	2.1Historical Background	3
	2.2Taxonomy and Classification	4
	2.3Epidemiology	8
	2.3.1Morphology and Life cycle	11
	2.3.2Pathogenesis and Clinical Picture	16
	2.4Immunological Background	21
	2.5Diagnostic Methods	23
	2.5.1Coproscopy	23
	2.5.2 Immunological-Based Detection Assays	29
	2.5.3Molecular Diagnosis	34
	2.6Treatment of Cryptosporidiosis	44
	2.7Prevention and Control	47
3. AIM <i>A</i>	AND PLAN OF WORK	52
4. SUBJ	ECTS AND METHODS	54
	4.1 Study type and population	54
	4.2Data and sample collection	54
	4.2.1 History Taking	54
	4.2.2 Sample collection	55
	4.3Work plan and sample processing	55
	4.3.1Parasitological Examination	56
	4.3.2 Copro - Immunoassay	62
	4.3.3 Copro - nPCR assays	67
	4.4Data Management and Analysis	85
5. RESU	LTS	86
	5.1 Demographic, environmental and clinical data of the study participants.	86
	5.1.1 Demographic data	86

List of Contents

5.1.1.1 Residence distribution	86
5.1.1.2 Age and gender distribution	88
5.1.2 Enviromental data	89
5.1.3 Clinical data	90
5.2 Diagnostic methods	92
5.2.1 Parasitological macroscopic findings	92
5.2.2 Parasitological microscopic findings	93
5.2.3 Diagnostic methods for detection of Cryptosporidium	94
5.2.3.1 Modified Zeihl-Neelsen stained stool smear	94
5.2.3.2Crypto-Giardia immunochromatography	95
5.2.3.3 Nested-PCR amplification of COWP and SSU rRNA genes	97
5.3 Genetic characterization of <i>Cryptosporidium</i> by n-PCR-RFLP	104
6. DISCUSSION	
7. SUMMARY & CONCLUSION	122
8. RECOMMENDATIONS	
APPENDIX	
9. REFERENCES	128
ARABIC SUMMARY	-

List of Abbreviations

LIST OF ABBREVIATIONS

AF Acid-fast

AFLP Amplified fragment length polymorphism AIDS Aquired immunodeficiency syndrome

AP-PCR Auramine-phenol AP-PCR Arbitrary primed-PCR

Bp base pair

°C Degree Celsius C. Cryptosporidium

CDC Center of disease control

CDPKs Calcium-dependent protein kinases
COWP Cryptosporidium oocyst wall protein

DAPI 4',6-diamidino-2-phenylindole dideoxyadenosine triphosphate ddATP dideoxycytidine triphosphate ddCTP dideoxyguanosine triphosphate ddGTP dideoxynucleotide-tri-phosphate ddNTP ddTTP dideoxythymidine triphosphate Direct fluorescent-antibody DFA Deoxyribonucleic acid DNA

dNTPs deoxynucleotide triphosphates

dsDNA Double strand Deoxyribonucleic acid

EIAs Enzyme immunoassays

ELISA Enzyme linked immunosorbent assay FDA Food and Drug Administration

FISH Fluorescence in situ hybridization

FITC-C-mAB Flourescein isothiocyanate-conjugated anti-

Cryptosporidium monoclonal antibody

G Gram

G. duodenalis
Gp60
Giardia duodenalis
Glycoprotein 60

H & E Hematoxylin and Eosin

HAART Highly active antiretroviral therapy HIV Human immunodeficiency virus

HSP Heat shock protein

ICT Immuochromatographic test IFA Immunoflourescent assay

IFN-γ Interferon-gamma

List of Abbreviations

IgA Immunoglobulin A IgM Immunoglobulin M

IL Interleukin

IQR interquartile range

K Potassium KDa Kilodalton

LAMP Loop Mediated Isothermal Amplification

mAbs Monoclonal antibodies

ml Milliliter

mZN modified Ziehl-Neelsen NK Natural killer cells

nPCR Nested polymerase chain reaction

№ Number

PCR Polymerase chain reaction

PVA Polyvinyl alcohol

qPCR Quantitative real-time PCR

RAPD-PCR Random amplified polymorphic DNA-PCR RFLP Restriction fragment length polymorphism

rRNA ribosomal Ribonucleic acid

RT Real-time

RT-PCR reverse transcription-PCR

s Second

SAF Sodium acetate formaldehyde

SD Standard deviation

Sig. Significance Spp. Species

ssDNA Single stranded DNA

SSU rRNA Small-subunit ribosomal Ribonucleic acid

TNF-α Tumor necrosis factor-alfa

TRAP Thrombospondin-related adhesive proteins

μl microliter μm Micrometer

U Units

USA United States of America

UV Ultra-violet

WHO World health organization

List of Tables

LIST OF TABLES

Table	Title	Page
2-1	Differences among <i>Cryptosporidium</i> spp.: their major hosts, oocyst sizes and locations in the gut	7
4-1	PCR target genes and their sequences.	75
4-2	The optimized 1ry and 2ry PCR assays reaction components.	76
4-3	Thermocycler program showing the used cycling conditions for primary and nested reactions for SSU rRNA gene.	77
4-4	Thermocycler program showing the used cycling conditions for primary and nested reactions for COWP gene	77
4-5	Components of the RFLP PCR mixture	83
5-1	Distribution of patients according to their residence.	87
5-2	Mean age of patients in the study	88
5-3	Descriptive analysis of the environmental data among the patients	90
5-4	Clinical presentations among the patients	91
5-5	Stool consistency among the patients	92
5-6	Intestinal parasitic infections identified by microscopic examination of stool samples	93
5-7	Summary of <i>Cryptosporidium</i> positive samples with different methods used for diagnosis.	99
5-8	Results of mZN stain, ICT vs nPCR in detection of <i>Cryptosporidium</i> infection	100
5-9	Diagnostic yield of mZN stain, ICT and nPCR	101
5-10	Analysis of potential risk factors for <i>Cryptosporidium</i> infection among patients enrolled in the study.	103

List of Figures

LIST OF FIGURES

Figure	Title	Page
2-1	Classification of Cryptosporidium	5
2-2	Life cycle of Cryptosporidium	15
2-3	Ultra structure of Apicomplexa	
		15
2-4	Sporulation of Cryptosporidium oocysts and	
	release of four sporozoites	16
2-5	Mechanism of diarrhea caused by	
	Cryptosporidium	17
2-6	Cryptosporidium virulence factors described to	
	date and their contribution to the parasite life cycle	20
2-7	Cryptosporidium spp. oocysts in wet mount	25
2-8	Cryptosporidium oocysts stained with Modified AF	
	stain.	27
2-9	Cryptosporidium spp. oocysts stained with the	
	fluorescent stain auramine-rhodamine.	29
2-10	Transmission electron micrograph of a murine	
	small intestinal epithelial cell infected by	
	Cryptosporidium	29
2-11	Immunofluorescence microscopy image, with FITC-	
	C-Mab (A) and DAPI staining (B) of	
	Cryptosporidium spp. oocysts	31
2-12	Model for ICT	33
2-13	A diagram illustrating FISH technique	35
2-14	Conventional PCR	38
2-15	Nested PCR	39
4-1	Principle of ICT	64
4-2	Packs of RIDA®QUICK Cryptosporidium/	
	Giardia ICT cassettes, strips and extraction buffer	
	[A], RIDA [®] QUICK Cryptosporidium/ Giardia	
	ICT strip [B] and RIDA®QUICK	
	Cryptosporidium/ Giardia ICT cassette [C].	76
4-3	Qiagen stool DNA extraction Mini Kit (Qiagen,	
	Germany).	69
4-4	Arktik Thermal Cycler (Thermo Scientific,	
	Germany)	78
4-5	Gel electrophoresis apparatus used for detection of	80

List of Figures

Figure	Title	Page
	the PCR products and the power supply.	
5-1	Distribution of patients according to governorate	87
5-2	Distribution of patients according to their location	
	either city or village	87
5-3	Percentage of patients distributed by age	88
5-4	Gender distribution among the patients	89
5-5	Percentage of patients presented with different	
	clinical data	91
5-6	Stool consistency among the patients	92
5-7	Parasitic infections detected by microscopic	
	examination of faecal samples.	93
5-8	Cryptosporidium oocyst stained with mZN stain	
	(x1000)	94
5-9	Cryptosporidium and Microsporidia mixed	
	infection by mZN stain (x1000)	95
5-10	RIDA QUICK Crypto-Giardia ICT cassette and	
	strips	96
5-11	An ethiduim bromide stained agarose gel	
	electrophoresis showing the secondary PCR	
	products of the of Cryptosporidium COWP gene	
	(553 bp)	98
5-12	Positive Cryptosporidium patients by the different	
	diagnostic laboratory tools	100
5.13	C.hominis bands at 284,129 and 107 bp molecular	
	weight by RFLP in comparison with the refrence	
	strain	105

ABSTRACT

Background: Human cryptosporidiosis caused by Cryptosporidium parasite has been recognized worldwide as the most common cause of protozoal diarrhea leading to significant morbidity and mortality in industrialized nations and developing countries. The vast majority of human cases of cryptosporidiosis worldwide are caused by two species: Cryptosporidium hominis, which causes infection in humans only, and Cryptosporidium parvum which causes infections in humans and animals. Exposition of Cryptosporidium genotypes by molecular assays is required to recognize sources of infections and routes transmission. facilitating the improvement of risk assessment and measures for prevention and control. The aim of the present study was to detect and correlate native Cryptosporidium molecular genetic variability among human isolates in Greater Cairo, Egypt, with their respective demographic, environmental and clinical manifestations.

Method: A total of 350 human stool samples collected from Egyptian patients from Greater Cairo, Egypt, with variable demographic, environmental and clinical presentations were subjected to modified Ziehl-Neelsen stain. Then, they were examined by RIDA QUICK Cryptosporidium/Giardia immunochromatography kit. All positive Cryptosporidium samples diagnosed by stain and/or kit were processed for Deoxyribonucleic acid (DNA) extraction. The extracted DNA samples were genotyped using nested polymerase chain reaction-Restriction fragment length polymorphism (nPCR-RFLP) targeting Small-subunit ribosomal Ribonucleic acid (SSU