

#### Clinical and CBCT Evaluation of Perforated Resorbable Membranes in Treatment of Class II Furcation Defects: A Randomized Clinical Trial

#### **Thesis**

Submitted in partial fulfillment for the requirements of Master Degree in Oral Diagnosis, Oral Medicine and Periodontology

#### $\mathbf{BY}$

#### Esraa Talaat Abbas Hassan

Faculty of Dentistry- Ain Shams University (B.D.S 2009) Dentist in Egyptian Armed Forces (Air Force Specialized Hospital)

#### **Supervisors**

#### Prof. Dr. Ahmed Youssef Gamal

Professor of Oral Medicine, Periodontology and Oral Diagnosis Faculty of Dentistry - Ain Shams University

#### **Dr. Ola Mohamed Ezzatt**

Lecturer of Oral Medicine, Periodontology and Oral Diagnosis Faculty of dentistry - Ain Shams University

#### Dr. Mostafa Saad Ashmawy

Lecturer of Oral and Maxillofacial Radiology Faculty of Dentistry - Ain Shams University

> Faculty of Dentistry Ain Shams University 2018

#### Clinical and CBCT Evaluation of Perforated Resorbable Membranes in Treatment of Class II Furcation Defects: A Randomized Clinical Trial

#### **Thesis**

Submitted in partial fulfillment for the requirements of Master Degree in Oral Diagnosis, Oral Medicine and Periodontology

#### BY

#### Esraa Talaat Abbas Hassan

Faculty of Dentistry- Ain Shams University (B.D.S 2009) Dentist in Egyptian Armed Forces (Air Force Specialized Hospital)

### **Supervisors**

#### Prof. Dr. Ahmed Youssef Gamal

Professor of Oral Medicine, Periodontology and Oral Diagnosis Faculty of Dentistry - Ain Shams University

#### **Dr. Ola Mohamed Ezzatt**

Lecturer of Oral Medicine, Periodontology and Oral Diagnosis Faculty of dentistry - Ain Shams University

#### Dr. Mostafa Saad Ashmawy

Lecturer of Oral and Maxillofacial Radiology Faculty of Dentistry - Ain Shams University

Faculty of Dentistry
Ain Shams University
2018

بسم الله الرحمن الرحيم

# \*وقل ربي زدني علما

صدق الله العظيم

## **Dedication**

This effort is dedicated to My beautiful & supportive family

My Great Parents

Æ

My lovely Brother

Ų

To my encouraging and sincere friend (Amany)

## Acknowledgement

First of all I would like to thank God who paved the way and by his will every thing can be achieved.

I would like to express my gratitude, deep thanks and appreciation to **Prof. Dr. Ahmed Youssef Gamal**; Professor of Oral Diagnosis, Oral Medicine and Periodontology, Faculty of Dentistry Ain Shams University, for the valuable guidance, keen supervision, and helpful suggestions during this work.

My deepest appreciation and sincere gratitude to **Dr. Ola Mohamed Ezzatt**; Lecturer of Oral Diagnosis, Oral Medicine and Periodontology,
Faculty of Dentistry Ain Shams University, for her valuable guidance,
close attention, devoted effort, supervision of all details of this work,
countless hours of work and support throughout the steps of this
research.

My great thanks and appreciation go to **Dr. Mostafa Saad Ashmawy**; Lecturer of Oral and Maxillofacial Radiology, Faculty of Dentistry Ain Shams University for his continuous advice, help and supervision during this research.

Last but not least, many thanks should be extended to all other members of Oral Diagnosis, Oral Medicine and Periodontology Department, Faculty of Dentistry, Ain Shams University for their spiritual encouragement and support.

# **List of Abbreviations**

| Acronym | Definition                                   |
|---------|----------------------------------------------|
| AC      | Alveolar Crest                               |
| BD      | Bony Defect                                  |
| BDX     | Bovine Derived Xenogenic Bone Graft          |
| BG      | Bioresorbable Collagen Barrier               |
| BMP     | Bone Morphogenic Protein                     |
| BRG     | Bone Replacement Graft                       |
| CAL     | Clinical Attachment Level                    |
| CBCT    | Cone Beam Computed Tomography                |
| CEJ     | Cemento Enamel Junction                      |
| CPRT    | Combined Periodontal Regenerative Techniques |
| CT      | Connective tissue                            |
| DFDBA   | Decalcified Freeze Dried Bone Allograft      |
| DF      | Depth Of Furcation                           |
| DICOM   | Digital Imaging And Communication In         |
|         | Medicine                                     |
| ECM     | Extracellular Matrix                         |
| EMDs    | Enamel Matrix Derivatives                    |
| EMPs    | Enamel Matrix Proteins                       |
| FDBA    | Freeze Dried Bone Allograft                  |
| FDDMA   | Freeze Dried Dura Matter                     |
| FD      | Furcation Defect                             |
| FGF     | Fibroblast Growth Factor                     |

| GBR              | Guided Bone Regeneration         |
|------------------|----------------------------------|
| GCF              | Gingival Crevicular Fluid        |
| GMSCs            | Gingival Mesenchymal Stem Cells  |
| GSC              | Gingival Stem Cells              |
| GTR              | Guided Tissue Regeneration       |
| HF               | Height Of Furcation              |
| HGF              | Human Gingival Fibroblasts       |
| HPD              | Horizontal Probing Depth         |
| IL-1             | Interleukin-1                    |
| MPM              | Modified Perforated Membrane     |
| NPCM             | Non Perforated Collagen Membrane |
| OFD              | Open Flap Debridement            |
| OPG              | Osteoprotegerin                  |
| PCL              | Poly Caprolactone                |
| PCM              | Perforated Collagen Membrane     |
| PD               | Probing Depth                    |
| PDGF             | Platelet Derived Growth Factor   |
| PDLF             | Periodontal Ligament Fibroblasts |
| PGE <sub>2</sub> | Prostaglandin E <sub>2</sub>     |
| PLA              | Poly Lactic Acid                 |
| PRF              | Platelet Rich Fibrin             |
| PRP              | Platelet Rich Plasma             |
| TGF              | Transforming Growth Factor       |
| TGF-ß            | Transforming Growth Factor Beta  |

| TNF-α | Tumor Necrosis Factor Alpha        |
|-------|------------------------------------|
| UV    | Ultraviolet                        |
| VEGF  | Vascular Endothelial Growth Factor |
| VPD   | Vertical Probing Depth             |
| WBC   | White Blood Cells                  |
| WF    | Width Of Furcation                 |

# **List of Tables**

| No | Title                                                                                                                                                                                                                              | Page |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding probing pocket depth at the mid-buccal surface (Mid B-PD) from the baseline till 6 & 9 months.                        | 52   |
| 2  | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding percentage change in periodontal pocket depth at the mid-buccal surface (MidB-PD) between different study intervals   | 53   |
| 3  | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding clinical attachment level at the mid-buccal surface (MidB-CAL) at baseline, 6 & 9 months                              | 55   |
| 4  | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding percentage change in Clinical Attachment Level at the mid-buccal surface (MidB-CAL) between different study intervals | 56   |
| 5  | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding vertical height of furcation (VHF) at baseline & 9                                                                    | 57   |

|   | months and % change from baseline to 9 months                                                                                                                                                               |    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6 | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding vertical width of furcation (WF) at baseline & 9 months and % change from baseline to 9 months | 59 |
| 7 | Baseline descriptive statistics and test of significance for comparison between the studied groups regarding depth of furcation (DF) at baseline & 9 months and % change from baseline to 9 months          | 61 |

# **List of Figures**

| No | Title                                                                                                                                                                       | Page |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  | <ul><li>a)Perforation of collagen membrane using tip of needle,</li><li>b)Perforated collagen membrane (PCM)</li></ul>                                                      | 38   |
| 2  | (a) Clear rigid acrylic stent used for standardization of clinical measurements. (b) Probing depth mid-buccally from reference point on stent to the level of crestal bone. | 40   |
| 3  | Full thickness flap reflection showing the defect                                                                                                                           | 42   |
| 4  | Application of bone graft to fill the defect                                                                                                                                | 42   |
| 5  | Membrane suturing around the defect                                                                                                                                         | 43   |
| 6  | Flap adaptation and suturing                                                                                                                                                | 43   |
| 7  | Panoramic curve                                                                                                                                                             | 47   |
| 8  | (a)Axial, (b) Coronal, (c) Sagittal view showing the defect                                                                                                                 | 47   |
| 9  | <ul> <li>(a) Maximum horizontal width of furcation (HWF)</li> <li>(b) Maximum vertical height of furcation (VHF)</li> <li>(c) Depth of furcation entrance</li> </ul>        | 48   |
| 10 | Bar chart showing comparison between groups in Mid B-PD at different follow- up intervals                                                                                   | 52   |
| 11 | Bar chart showing comparison between groups in percentage changes of mean Mid B-PD between different follow—up intervals                                                    | 53   |

| 12 | Bar chart showing comparison between groups in Mid B-CAL at different follow- up intervals                                 | 55 |
|----|----------------------------------------------------------------------------------------------------------------------------|----|
| 13 | Bar chart showing comparison between groups in percentage changes of mean Mid B-CAL between different follow –up intervals | 56 |
| 14 | Bar chart showing comparison between groups in VHF at different follow-up intervals                                        | 58 |
| 15 | Bar chart showing Average intergroup height of furcation percentage change from base line to 9 months                      | 58 |
| 16 | Bar chart showing comparison between groups in WF at different follow-up intervals                                         | 60 |
| 17 | Bar chart showing Average intergroup width of furcation percentage change from base line to 9 months                       | 60 |
| 18 | Bar chart showing Average intragroup clinical depth of furcation at different follow-up intervals                          | 62 |
| 19 | Bar chart showing Average intergroup depth of furcation percentage change from base line to 9 months intervals             | 62 |
| 20 | Clinical measurements and surgical procedures in group I (NPCM)                                                            | 63 |
| 21 | Radiographic measurements in group I                                                                                       | 64 |
| 22 | Clinical measurements and surgical procedures in group II (PCM)                                                            | 65 |
| 23 | Radiographic measurements in group II                                                                                      | 66 |

## **List of contents**

| Introduction         | 1  |
|----------------------|----|
| Review of literature | 4  |
| Aim of the study     | 34 |
| Subject and Methods  | 35 |
| Results              | 50 |
| Case presentation    | 63 |
| Discussion           | 67 |
| Conclusion           | 76 |
| Recommendation       | 77 |
| Summary              | 78 |
| References           | 81 |
| Arabic summary       |    |

## **INTRODUCTION**

The progression of chronic inflammation during periodontitis may affect the bifurcation or trifurcation area of multirooted teeth. The furcation defects represent one of the challenging aspects of periodontal therapy because of the complex morphology of the furcation area which makes it difficult for debridement during routine therapy (**Gattani D, et al. 2017**).

Therapies for furcation defects ranged from thorough debridement to regenerative procedures; the therapy of furcation involvement primarily depend on the extent of the disease, on the strategic importance of the affected tooth, and on the degree of patient cooperation (Sánchez-Pérez A, et al .2009).

Regeneration of the periodontium become a primary therapeutic goal in the treatment of furcation defect providing the opportunity to regenerate the lost periodontium, re-establish health and improve support for the dentition (Rachel A. 2014).

In **Grade I** involvement the treatment is simple because this kind of furcation usually exhibits supra-bony pockets, so this grade is treated by scaling and curettage or by gingivectomy, depending on pocket depth and the fibrosity of pocket walls. While in **Grade II** it involves the creation of a flap and then the area is debrided of granulation tissue, the root surfaces are carefully scaled and

planed with curettes and ultrasonic scalers, various regenerative procedures have been tried as guided tissue regeneration (GTR) in combination with bone grafts, emdogain or hydroxyapatite. In Grade III and IV the destruction of inter-radicular tissue allows a probe to pass freely through the furcation; gingiva is resected on the coronal level for better visibility and accessibility from all the directions so that the involved root surfaces may be thoroughly planed and smoothed without disturbing the bone (Boariu M. 2007).

The principle of GTR is based on the exclusion of gingival connective tissue cells and prevention of epithelial down growth allowing cells thereby into the wound. with periodontal regenerative potential (PDL cells and bone cells) to the enter wound first (Wang H, et al. 2005). However periodontal the combination of barrier membranes and grafting materials for the treatment of furcation defects was reviewed and authors indicated that no additional benefits of combination treatments were detected in Class II furcation defects (Sculean A, et al. 2008).

The most important factor that affects GTR treatment outcome is periosteal isolation; during the GTR procedure, the periosteum is elevated with the flap, and the barrier is placed over the defect, thereby excluding any contribution of mesenchymal stem cells and osteoblasts from the periosteum (**Deliberador T, et al. 2006**).