A thesis Submitted By

Sayed Sayed Metwally

M.Sc. (Chemistry)

Atomic Energy Authority

Chemistry Department, Faculty of Science,

Ain Shams University

The Degree of Doctor of philosophy in Chemistry (Ph.D.)

A thesis Submitted By

Sayed Sayed Metwally

M.Sc. (Chemistry)

Atomic Energy Authority

Chemistry Department, Faculty of Science,
Ain Shams University

The Degree of Ph.D. in Chemistry

Supervised By

Prof. Dr. Hisham Fouad Aly

Prof. Dr. Salah Abo-El-Enein (D.Sc.)

Professor of Nuclear Chemistry,

Professor of Physical Chemistry and building materials, Faculty of science,

Atomic Energy Authority

Ain Shams University

Asst. Prof. Belal El-Gammal

Assistant Professor of Physical

Chemistry, Atomic Energy Authority

A thesis Submitted By

M.Sc. (Chemistry)

Thesis Advisors:	Signature	
1-Prof. Dr. Salah Abo-El-Enein (D. Sc.)		
Professor of Physical Chemistry and		
building materials, Faculty of science,		
Ain Shams University		
2-Prof. Dr. Hisham Fouad Aly		
Professor of Nuclear Chemistry,		
Atomic Energy Authority		
3- Asst. Prof. Belal El-Gammal		
Assistant Professor of Physical Chemistry,		
Atomic Energy Authority		

Head of the Department of Chemistry

Prof. Dr./ El-Sayed A. Soliman

ABSTRACT

Ion exchange is one of the most common and effective treatment methods for radioactive liquid waste. It's technique is well developed and has been employed for many years in both the nuclear industry and in other industries. In this thesis poly-acrylamide and poly-acrylonitrile based Ce(IV) phosphate were prepared and characterized by using advanced analytical techniques. The prepared materials were used as a composite ion exchangers for removal and separation of cesium, cobalt and europium ions from radioactive waste solution. Effect of pH of the medium on the removal of aforementioned ions was investigated. The kinetic sorption was studied and the data were analysed by different kinetic models which revealed that the mechanism of the sorption process is mainly controlled by pseudo-secondorder reaction, and particle diffusion might be involved in the sorption process. The values of diffusion coefficient of the three metal ions were calculated and suggested that chemisorption was the predominant sorption mechanism. Several isotherm models were applied for the sorption, and thermodynamic parameters were determined. The positive values of enthalpy change, ΔH , for the three metal ions confirmed the endothermic nature of the sorption process. Breakthrough data were determined in a fixed bed column at room temperature (298 °K). The effect of various process parameters like bed depth, flow rate and initial metal ion concentration on the breakthrough curves were studied. The results indicated that the prepared materials can be used as an efficient ion exchange materials for the removal of cesium, cobalt and europium ions from radioactive waste solutions.

Contents

Ackı	nowledgement	(i)
List of Tables		(ii)
List of Figures		(v)
Aim	of Work	(xii)
	[1] Introduction	
1.1.	Radioactive Waste	(1)
	1.1.1. Sources of Radioactive Wastes	(2)
	1.1.2. Types of Radioactive Wastes	(2)
1.2.	Ion Exchange	(6)
	1.2.1. Historical Background	(6)
	1.2.2. General	(7)
	1.2.3. Ion Exchange and Sorption	(9)
	1.2.4. Ion Exchange Capacity	(10)
	1.2.5. Kinetics and Dynamics	(11)
	1.2.6. Ion Exchange Materials	(12)
	[2] Experimental	
2.1.	Chemicals and Reagents	(31)

2.2.	Instrumentation	(31)
	2.2.1. General	(31)
	2.2.2. U.V Spectrophotometer	(31)
	2.2.3. Radioactive Measurements	(32)
	2.2.4. Atomic Absorption Spectrophotometer	(32)
2.3.	Characterization of the Prepared Materials	(32)
2.4	Preparation of the Composite Resins	(33)
2.5.	Preparation of Metal Ion Solutions	(34)
2.6.	Ion-Exchange Capacity	(34)
2.7.	Sorption Investigations	(35)
	2.7.1. Batch System	(35)
	2.7.2. Column System	(35)
	[3] Results and Discussion	
3.1.	Poly-acrylamide Based Ce(IV) Phosphate System	(37)
3.1.	Poly-acrylamide Based Ce(IV) Phosphate System 3.1.1. Characterization of the Prepared Material	(37) (37)
3.1.		
3.1.	3.1.1. Characterization of the Prepared Material	(37)
3.1.	3.1.1. Characterization of the Prepared Material3.1.2. Effect of pH	(37) (44)
3.1.	3.1.1. Characterization of the Prepared Material3.1.2. Effect of pH3.1.3. Kinetic Sorption Studies	(37) (44) (46)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size 	(37) (44) (46) (46)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature 	(37) (44) (46) (46) (49)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature III. Sorption Kinetics Modeling 	(37) (44) (46) (46) (49) (52)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature III. Sorption Kinetics Modeling i. Pseudo-first-order 	(37) (44) (46) (46) (49) (52) (52)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature III. Sorption Kinetics Modeling i. Pseudo-first-order ii. Pseudo-second-order 	(37) (44) (46) (46) (49) (52) (52) (55)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature III. Sorption Kinetics Modeling i. Pseudo-first-order ii. Pseudo-second-order iii. Intra-particle Diffusion 	(37) (44) (46) (46) (49) (52) (52) (55) (57)
3.1.	 3.1.1. Characterization of the Prepared Material 3.1.2. Effect of pH 3.1.3. Kinetic Sorption Studies I. Effect of Particle Size II. Effect of Contact Time and Temperature III. Sorption Kinetics Modeling Pseudo-first-order Pseudo-second-order Intra-particle Diffusion Determination of Diffusivity 	(37) (44) (46) (46) (49) (52) (52) (55) (57) (61)

	I. Effect of Metal Ion concentration and Temperature	(75)
	II. Isotherm Models	(77)
	i. Langmuir Isotherm Model	(77)
	ii. Freundlich Isotherm Model	(81)
	iii. Dubinin-Radushkevich (D-R) Isotherm	(84)
	iv. Temkin Isotherm	(87)
	v. Thermodynamic Studies	(90)
3.2.	Poly-acrylonitrile Based Ce(IV) Phosphate System	(92)
	3.2.1. Characterization of the Prepared Material	(92)
	3.2.2. Effect of pH	(99)
	3.2.3. Kinetic Sorption Studies	(101)
	I. Effect of Particle Size	(101)
	II. Effect of Contact Time and Temperature	(103)
	III. Sorption Kinetics Modeling	(106)
	i. Pseudo-first-order	(106)
	ii. Pseudo-second-order	(108)
	iii. Intra-particle Diffusion	(110)
	iv. Determination of Diffusivity	(112)
	v. Homogeneous Particle Diffusion Model	(116)
	vi. Elovich Equation	(120)
	3.2.4. Sorption Isotherm Studies	(123)
	I. Effect of Metal Ion Concentration	(123)
	II. Isotherm Models	(124)
	i- Langmuir Isotherm Model	(124)
	ii- Freundlich Isotherm	(126)
	iii. Dubinin-Radushkevich (D-R) Isotherm	(128)
	iv. Temkin Isotherm	(131)
	v. Thermodynamic Studies	(133)

3.3.	Column Investigation	(135)
	3.3.1. Effect of Bed Depth	(135)
	3.3.2. Effect of Flow Rate	(138)
	3.3.3. Effect of Initial Ion Concentration	(141)
	3.3.4. Breakthrough for the Three Metal Ions in Mixture	(144)
	3.3.5. Separation of Cs ⁺ , Co ²⁺ and Eu ³⁺	(145)
	3.3.6. Removal and Separation of Cs ⁺ , Co ²⁺ and Eu ³⁺	(146)
	from Radioactive Waste Solution	
Sum	mary	(147)
Con	clusion	(152)
Refe	rences	

Acknowledgement

First of all and above, I thank and pray to ALLAH for explicitly known and uncountable reasons.

My deep appreciation and sincere thanks to **Prof. Dr./** S. A. Abo-El-Enein, professor of physical chemistry and building materials, Ain Shams University, for sponsoring this thesis and continuous encouragement and guidance.

Heartly, I would like to express my grateful gratitude to **Prof. Dr./H. F. Aly**, professor of nuclear chemistry, Atomic Energy Authority for supervising the research investigated and for his valuable guidance which made this thesis possible in its final shape. This research was carried out under his direction. The guidance and support given by him were indispensable to the completion of this work.

I wish to express my grateful gratitude to Asst. Prof./
B. El-Gammal, assistant professor of physical chemistry,
Atomic Energy Authority for suggesting the point and for
valuable discussion, continuous guidance and sincere
supervision and help during the different stages of this work.

Finally I can't forget the complete assistance and faithful encouragement of my family during the preparation of this thesis.

Author would also to thank all the staff members of the Hot Laboratories Center, Atomic Energy Authority.

List of Tables

Table (1):	The most common functional groups of ion exchangers	8
Table (2):	General comparison of organic and inorganic ion exchangers	20
Table (3):	Capacities of Cs^+ , Co^{2+} and Eu^{3+} ions on PAM-CP and PAN-CP	35
Table (4):	Solubility of PAM-CP at room temperature	42
Table (5):	Chemical stability of PAM-CP in various acid, alkali, and salt solutions	43
Table (6):	Effect of particle size of PAM-CP on the capacity of Cs^+ , Co^{2+} and Eu^{3+} ions	49
Table (7):	The kinetic parameters of Pseudo-first-order model for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAM-CP at different temp.	54
Table (8):	The kinetic parameters of Pseudo-second-order model for sorption of Cs^+ , Co^{2+} and Eu^{3+} onto PAM-CP at different temp	56
Table (9):	The kinetic parameters of intra-particle diffusion model for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAM-CP at different temp.	60
Table (10):	Diffusion coefficient and activation energy for sorption of Cs^+ , Co^{2+} and Eu^{3+} onto PAM-CP	64
Table (11):	Values of diffusion coefficient for Cs ⁺ , Co ²⁺ and Eu ³⁺ ions obtained from homogeneous particle diffusion model	70
Table (12):	Elovich's constants for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAM-CP	71
Table (13):	Langmuir parameters for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAM-CP	81
Table (14):	Freundlich parameters for adsorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAM-CP at different temperature	83

Table (15):	D–R isotherm parameters for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAM-CP at different temp.	87
Table (16):	Temkin isotherm constants for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAM-CP	89
Table (17):	Thermodynamic parameters for sorption of Cs^+ , Co^{2+} and Eu^{3+} ion onto PAM-CP	91
Table (18):	Solubility of PAN-CP resin at room temperature	97
Table (19):	Chemical stability of PAN-CP in various acid, alkali, and salt solutions	98
Table (20):	Effect of particle size of PAN-CP resin on the capacity of Cs^+ , Co^{2+} and Eu^{3+} ions	103
Table (21):	The kinetic parameters for Pseudo-first-order sorption of $Cs^+ Co^{2+}$ and Eu^{3+} at different temperature.	108
Table (22):	The kinetic parameters for Pseudo-second-order sorption of $Cs^+ Co^{2+}$ and Eu^{3+} at different temperature	108
Table (23):	Kinetic parameters for intra-particle diffusion model for sorption of Cs^+ , Co^{2+} and Eu^{3+} onto PAN-CP	112
Table (24):	Values of diffusion coefficient and activation energy for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAN-CP	115
Table (25):	Values of diffusion coefficient for Cs, Co and Eu ions obtained from homogeneous particle diffusion model	120
Table (26):	Elovich's constants for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAN-CP	122
Table (27):	Langmuir parameters for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAN-CP	126
Table (28):	Freundlich parameters for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAN-CP	128
Table (29):	D–R isotherm parameters for sorption of Cs^+ , Co^{2^+} and Eu^{3^+} ions onto PAN-CP at different temp	130
Table (30):	Temkin parameters for sorption of C ⁺ , Co ²⁺ and Eu ³⁺ onto PAN-CP	133

Table (31):	Thermodynamic parameters for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAN-CP	134
Table (32):	Effect of bed depth on breakthrough capacity for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ onto PAM-CP	138
Table (33):	Effect of flow rate on breakthrough for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions at 1.0 cm bed depth	141
Table (34):	Effect of feed concentration on breakthrough capacity for sorption of Cs^+ , Co^{2+} and Eu^{3+} ions at 0.5ml/min flow rate and 1.0cm bed depth	143

List of Figures

Figure (1):	DTA & TGA curves of PAM-CP	(37)
Figure (2):	Scanning Electron Microscope of PAM-CP	(38)
Figure (3):	FTIR spectra of Poly acrylamide	(39)
Figure (4):	FTIR spectra of PAM-CP	(39)
Figure (5):	Electron Spin Resonance pattern of PAM-CP	(40)
Figure (6):	The percentage swelling of PAM-CP at different temp	(41)
Figure (7):	pH titration curve for PAM-CP	(44)
Figure (8):	Effect of pH on distribution coefficient of $Cs^{\scriptscriptstyle +}$, $Co^{\scriptscriptstyle 2+}$ and $Eu^{\scriptscriptstyle 3+}$ ions	(46)
Figure (9-1):	Effect of particle size of PAM-CP on removal of Cs ion	(47)
Figure (9-2):	Effect of particle size of PAM-CP on removal of Co ion	(48)
Figure (9-3):	Effect of particle size of PAM-CP on removal of Eu ion	(48)
Figure (10):	Effect of contact time on sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions onto PAM-CP	(50)
Figure (11-1):	Effect of contact time on sorption of Cs ⁺ ion at different temperature onto PAM-CP	(50)
Figure (11-2):	Effect of contact time on sorption of Co ²⁺ ion at different temperature onto PAM-CP	(51)
Figure (11-3):	Effect of contact time on sorption of Eu ³⁺ ion at different temperature onto PAM-CP	(51)
Figure (12-1):	Pseudo-first-order plots for Cs ⁺ onto PAM-CP at different temperatures	(53)
Figure (12-2):	Pseudo-first-order plots for Co ²⁺ onto PAM-CP at different temperatures	(53)
Figure (12-3):	Pseudo-first-order plots of Eu ³⁺ onto PAM-CP at different temperatures	(54)

Figure (13-1):	Pseudo-second-order plots for Cs onto PAM-CP at different temperatures.	(55)
Figure (13-2):	Pseudo-second-order plots for Co ²⁺ onto PAM-CP at different temperatures	(56)
Figure (13-3):	Pseudo-second-order plots for Eu ³⁺ onto PAM-CP at different temperatures	(56)
Figure (14-1):	Intra-particle diffusion model for sorption of Cs ⁺ onto PAM-CP at different temperatures	(59)
Figure (14-2):	Intra-particle diffusion model for sorption of Co ²⁺ onto PAM-CP at different temperatures	(59)
Figure (14-3):	Intra-particle diffusion model for sorption of Eu ³⁺ onto PAM-CP at different temperatures	(60)
Figure (15-1):	Bt plots for sorption of Cs ⁺ onto PAM-CP	(62)
Figure (15-2):	Bt plots for sorption of Co ²⁺ onto PAM-CP	(63)
Figure (15-3):	Bt plots for sorption of Eu ³⁺ onto PAM-CP	(63)
Figure (16):	Arrhenius plot for the particle diffusion of Cs, Co and Eu ions onto PAM-CP.	(64)
Figure (17-1):	HPDM for sorption of Cs ⁺ onto PAM-CP	(66)
Figure (17-2):	HPDM for sorption of Co ²⁺ onto PAM-CP	(66)
Figure (17-3):	HPDM for sorption of Eu ³⁺ onto PAM-CP	(67)
Figure (18-1):	HPDM for sorption of Cs ⁺ onto PAM-CP	(68)
Figure (18-2):	HPDM for sorption of Co ²⁺ onto PAM-CP	(69)
Figure (18-3):	HPDM for sorption of Eu ³⁺ onto PAM-CP	(69)
Figure (19-1):	Elovich model for sorption of Cs ⁺ at different initial concentrations	(72)
Figure (19-2):	Elovich model for adsorption of Co ²⁺ at different initial concentrations	(72)
Figure (19-3):	Elovich model for adsorption of Eu ³⁺ at different initial concentrations	(73)

Figure (20):	Effect of metal ion concentration on the uptake of Cs, Co and Eu ions at room temperature	(75)
Figure (21-1):	Effect of Cs ⁺ ion concentrations on the uptake onto PAM-CP at different temperature	(76)
Figure (21-2):	Effect of Co ²⁺ ion concentrations on the uptake onto PAM-CP at different temperature	(76)
Figure (21-3):	Effect of Eu ³⁺ ion concentration on the uptake onto PAM-CP at different temperature	(77)
Figure (22-1):	Langmuir isotherm plots for sorption of Cs ⁺ onto PAM-CP	(79)
Figure (22-2):	Langmuir isotherm plots for sorption of Co ²⁺ onto PAM-CP	(80)
Figure (22-3):	Langmuir isotherm plots for sorption of Eu ³⁺ onto PAM-CP	(80)
Figure (23-1):	Freundlich isotherm plots for sorption of Cs ⁺ onto PAM-CP	(82)
Figure (23-2):	Freundlich isotherm plots for sorption of Co ²⁺ onto PAM-CP	(82)
Figure (23-3):	Freundlich isotherm plots for sorption of Eu ³⁺ onto PAM-CP	(83)
Figure (24-1):	D–R isotherm plots for the sorption of Cs+ onto PAM-CP	(85)
Figure (24-2)	D–R isotherm plots for the sorption of Co ²⁺ onto PAM-CP	(86)
Figure (24-3)	D–R isotherm plots for the sorption of Eu ³⁺ onto PAM-CP	(86)
Figure (25-1)	Temkin model for sorption of Cs ⁺ onto PAM-CP	(88)
Figure (25-2)	Temkin model for sorption of Co ²⁺ onto PAM-CP	(88)
Figure (25-3)	Temkin model for sorption of Eu ³⁺ onto PAM-CP	(89)
Figure (26)	Vant Hoff plots for sorption of Cs ⁺ , Co ²⁺ and Eu ³⁺ ions	(91)