

Ain Shams University

Faculty of Engineering

Behavior of Concrete Filled Steel Tube (CFST) Columns with Internal Steel Stiffeners under Axial Load

By

Noha Refaat Nasseif Ibrahim

B. Sc. 1999, Structural Engineering Department Faculty of Engineering, Helwan University,

A Thesis

Submitted in partial fulfillment for the requirement of the Degree of Master of Science in Civil Engineering (Structural)

Supervised by

Prof. Dr. Ahmed Hassan Yousef

Professor of Steel Structures and Bridges engineering,

Ain Shams University

Dr. Said Yousif Aboul ElHaggag

Associate Prof. of Structural Engineering,

Ain Shams University

CAIRO

2017

APPROVAL SHEET

Noha Refaat Naseef Ibrahim.

Name of Student:

Name of Thesis:	Concrete filled steel tube with internatival load.	al stiffeners un	der
Degree:	Master of Science in Civil Engineering	ıg,	
	(Structural Engineering).		
Examiners Com	mittee:		
Prof. Dr. Nabil Sag	yed Mahmoud	()
Professor of Steel Struc	ctures and Bridges engineering,		
Structural Engineering	g Department,		
Mansoura University.			
Prof. Dr. Abdel Re	ehim Khalil Dessouki	()
Professor of Steel Structure	ctures and Bridges engineering,		
Structural Engineering	Department,		
Ain Shams University	•		
Prof. Dr. Ahmed H	Hassan Yousef	()
Professor of Steel Stru	actures and Bridges engineerin,		
Structural Engineering	g Department,		
Ain Shams University			
Dr. Saed Aboul El	hagag	()
Associate Professor,			
Structural Engineering	g Department,		
Ain Shams University	•		

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Master of Science, Civil Engineering (Structural Engineering).

The work included in this thesis was carried out by the author in the

Structural Engineering Department, Faculty of Engineering, Ain Shams

University, from 2014 to 2017.

No part of this thesis has been submitted for a degree or a qualification at

any other University or Institute.

Date:

Signature:

Name:

Noha Refaat Naseef Ibrahim.

INFORMATION ABOUT THE RESEARCHER

Name Noha Refaat Nasseif Ibrahim

Date of Birth 1/1/1977

Place of Birth Cairo

Qualifications B.Sc. Degree in Structural Engineering, Faculty of

Engineering, Helwan University, 1999.

Current Job Civil engineer in educational buildings authority.

ACKNOWLEDGEMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful.

The author would like to express her deepest gratitude and appreciation to Prof.Dr.Ahmed HassanYousef for his invaluable guidance, support, suggestions, advice and encouragement.

The author greatly appreciate the help, guidance and support provided by Dr. Saed Abo Elhagag, Associate Professor, Structural Engineering Department, Ain Shams University, throughout all stages of research, especially lately as he insisted on following her up, almost daily, to complete the thesis perfectly.

Finally, she would like to express her heartfelt appreciation to her family and her beloved husband for lots of support.

Abstract

The behavior of concrete filled steel tube (CFST) columns with internal steel stiffeners under axial load is presented in this thesis. The behavior of the columns is examined by the use of finite element software ANSYS. Results from nonlinear finite element analyses are compared with those from corresponding experimental tests which uncover the reasonable accuracy of the modeling. The columns are extensively developed considering three different special arrangements of the internal steel stiffeners with various number, spacing, and widths of the stiffeners. The main variables are: (1) arrangement of the steel stiffeners (C1, C2, and C3); (2) number of the steel stiffeners (2 and 3); (3) spacing of the steel stiffeners (50mm, 100mm); (4) width of the steel stiffeners (50mm, 75mm, 100mm; (5) steel tube thickness (2mm, 25mm, 3mm); (6) concrete compressive strength (20 MPa, 2.5 MPa, 30 MPa); (7) steel yield stress (240 MPa, 280 MPa, 360 MPa). Effects of the variables on the behavior of the columns are assessed. Failure modes of the columns are also illustrated. It is concluded that the variables have considerable effects on the behavior of the columns. Moreover, ultimate load capacities of the columns are predicted by the Egyptian code (ECP 2007), the American code (AISC 2005), the Euro code (EC4 2004), and are compared to those obtained from finite element analyses of this thesis. It is observed that (ANSI/AISC 2005) approaches are conservative to estimate the ultimate capacities of the columns, (EC4 2004) approach overestimates the ultimate capacities of CFST columns for some models and approaches are conservative to estimate the ultimate capacities of the columns for other models, and (ECP 2007) approach conservative the ultimate capacities of the CFST columns.

TABLE OF CONTENTS

~		_
CHA	PTER	1

INTR	RODUC	TION		1
1.1	GENE	ERAL		1
1.2	TYPE	S OF CO	NCRETE-FILLED STEEL TUBE(CFST)	2
1.3	BEHA	AVIOR O	F CONCRETE FILLED STEEL TUBE (CFST)	3
1.4	AIMS	OF RESI	EARCH	5
1.5	CONT	ENTS O	F THESIS	5
СНА	PTER 2	2		
LITE	CRATUI	RE REVI	EW	7
2.1	GENE	ERAL		7
2.2	PREV	IOUS RE	SERCHES OF CFST COLUMN	7
	2.2.1	Numerio	cal previous research	7
		2.2.1.1	Nonlinear Analysis of Axially Loaded Concrete-Filled Tube columns was done considering confinement effect	7
		2.2.1.2	Behavior of uni-axially loaded concrete-filled-steel- tube column confined by external rings	8
		2.2.1.3	Behavior of stiffened concrete-filled steel composite (CFSC) stub Columns	10
		2.2.1.4	Nonlinear analysis of with and without stiffeners of hollow and concrete filled steel tube column	12
	2.2.2	Experin	nental previous research	13
		2.2.2.1	Axial capacity of circular concrete-filled tube column	13
		2.2.2.2	An experimental behavior of concrete filled steel tubular columns	14
		2.2.2.3	High-strength rectangular concrete- filled steel hollow section stub columns	15

		2.2.2.4	Strength of concrete filled steel tubular columns	16
		2.2.2.5	Behavior of square tubed steel reinforced-concrete (SRC) columns under eccentric compression	18
2.3	FACT	ORS AFF	FECTING COLUMN STRENGTH	19
	2.3.1	Tube W	idth-to-Thickness Ratio	19
	2.3.2	Column	Length-to-Width Ratio	19
2.4	DESIG CODE		EDURES IN DIFFERENT INTERNATIONAL	20
	2.4.1		abe Slenderness Limits in Current Codes (ECP2001 & 05 & EC42004)	21
	2.4.2	Material	Strength Limits	22
	2.4.3	Steel Tu	be Area Limits	23
	2.4.4	Initial In	mperfections Limits in Current Codes	23
	2.4.5	Design I	Methods in Different International Codes	24
		2.4.5.1	AISC, 2005	24
		2.4.5.2	Euro code 4 (EC4), 2004	25
		2.4.5.3	ECP (2001)	26
СНА	PTER 3	3		
FINI	TE ELE	EMENT A	ANALYSIS AND VERIFICATION	28
3.1	GENE	ERAL		28
3.2	FINIT	E ELEME	ENT MODEL AND ANSYS PROGRAM	29
	3.2.1	Element	characterizing	31
		3.2.1.1	Modeling of Steel Tube and End Plates	31
		3.2.1.2	Modeling of Concrete Core	32
		3.2.1.3	Modeling of Interface between Concrete and Steel Tube	33
	3.2.2	Modelin	g of Loads and Boundary Conditions	34

		3.2.2.1	Geometric	Nonlinearities	34
		3.2.2.2	Material N	Nonlinearities	35
			3.2.2.2.1	Stress-Strain Relationship of Steel Tube	36
			3.2.2.2.2	Stress-Strain Relationship of concrete	37
	3.2.3	Modelin	g of Loads a	and Boundary Conditions	40
	3.2.4	Initial In	nperfections		41
	3.2.5	Nonlinea	ar Analysis		42
		3.2.5.1	Increment	al control technique	42
		3.2.5.2	Iterative se	olution methods	45
		3.2.5.3	Termination	on schemes	48
3.3	VERI	FICATIO	N		48
	3.3.1	Verificat	ion of FEM	using current	49
		3.3.1.1		on of FEM Using (Matloub 2009) ntal results	49
СНА	PTER 4	4			
INVE	ESTIGA	ATION O	F INTERNA	AL STIFFENER CONFIGURATIONS	54
4.1	INTR	RODUCTI	ON		54
4.2	PAR	AMETER	S INVESTI	GATED	54
	4.2.1	Unstiffer	ned columns	S	54
	4.2.2	Stiffened	l columns		54
		4.2.2.1	Effect of s	stiffeners on ultimate load capacity of CFST	54
		4.2.2.2	Effect of s	steel stiffeners on ductility of CFST	55
4.3	RESU	LTS AND	DISCUSS	IONS	58
	4.3.1	Unstiffer	ned columns	S	61
		4.3.1.1	Effect of o	column cross section on ultimate load capacity	61

		4.3.1.2	Deformed shapes of unstiffened CFST	62
	4.3.2	Stiffened	d columns	66
		4.3.2.1	Effect of arrangements of the steel stiffeners on ultimate load capacity	66
		4.3.2.2	Effect of number of the steel stiffeners on ultimate load capacity of CFST	73
		4.3.2.3	Effect of spacing between steel stiffeners	84
		4.3.2.4	Effect of width of steel stiffeners on ultimate load capacity	86
	4.3.3	Effect of	steel thickness on ultimate load capacity	87
	4.3.4	Effect of ductility	f arrangement, number, and spacing of steel stiffeners on	91
	4.3.5	Effect of	steel thickness on ductility	94
	4.3.6	Effect of	f width of steel stiffeners on ductility	96
4.4	FAIL	URE MOI	DES	98
СНА	PTER :	5		
COM COD		SON BET	WEEN F.E.M RESULTS AND INTERNATIONAL	102
5.1	GENI	ERAL		102
5.2	PARA	AMETRIC	STUDY	102
5.3	RESU	JLTS		103
	5.3.1	Effect of	f flat width-to-thickness b/t ratio	103
	5.3.2	Effect of	f the Steel Yield Strength (F_y)	107
	5.3.3	Effect of	f concrete compressive Strength (F_{cu})	110
СНА	PTER (6		
SUM	MARY	AND CO	ONCLUTIONS	114

	RECOMMENDATION FOR FURTHER RESEARCH RENCES	116 117
	CONCLUSIONS	115
6.1	SUMMARY	114

LIST OF FIGURES

CHAPTER 1		
Figure (1.1)	various cross section of CFST composite columns	3
Figure (1.2)	Stress condition in steel tube and concrete core at different stages of loading	4
CHAPTER 2 Figure (2.1)	width-to-thickness ratios of square and circular cross-sections	11
CHAPTER 3		
Figure (3.1)	Shell 181 elements, ANSYS	32
Figure (3.2)	Solid65 3-D	32
Figure (3.3)	Stress-strain curve of steel used in the present research	37
Figure (3.4)	Equivalent uniaxial stress-strain curves for concrete	38
Figure (3.5)	Typical models of boundary conditions of CFST columns	40
Figure (3.6)	Typical models of applied load of CFST columns	41
Figure (3.7)	Force Control Technique	43
Figure (3.8)	Displacement Control Technique	43
Figure (3.9)	Arc-length control technique	44
Figure (3.10)	Failure of Control Techniques	45
Figure (3.11)	Modified Newton Raphson Iterative Method with Arc-length Control	47
Figure (3.12)	Cross section of CFST columns	49

Comparison between experimental (Matloub, 2009) and Present FEM

53

CHAPTER 4

Figure (3.13)

(2016)

Figure (4.1)	Finite element model and geometric dimension	56
Figure (4.2)	Arrangements of steel stiffeners in CFST columns	56
Figure (4.3)	Typical elevations of stiffened CFST columns	57
Figure (4.4)	Ultimate load capacity for unstiffened columns	62
Figure (4.5)	Deformed shape for different column cross sections	65
Figure (4.6)	Deformed Shape of CFST Column (C1-80-2-50-280-25-2(50))	67
Figure (4.7)	Deformed Shape of CFST Column (C2-80-2-50-280-25-2(50))	68
Figure (4.8)	Deformed Shape of CFST Column ((C3-80-2-50-280-25-2(50)	69
Figure (4.9)	Deformed Shape of CFST Column((C1-250-2-50-280-25-2(50))	70
Figure (4.10)	Deformed Shape of CFST Column ((C2-250-2-50-280-25-2(50))	71
Figure (4.11)	Deformed Shape of CFST Column ((C3-250-2-50-280-252(50))	72
Figure (4.12)	Deformed Shape Ux of CFST Column with Stiffener Shape (C1)	76
Figure (4.13)	Effect of number of steel stiffeners shape (C1) on ultimate load capacity	77
Figure (4.14)	Deformed Shape Ux of CFST Column with stiffener Shape (C2)	79
Figure (4.15)	Effect of number of steel stiffeners shape (C2) on ultimate load capacity	80
Figure (4.16)	Deformed Shape Ux of CFST Column with Stiffener Shape (C3)	82
Figure (4.17)	Effect of number of steel stiffeners shape(C3) on ultimate load capacity	83
Figure (4.18)	Effect of spacing of steel stiffeners on ultimate load capacity	85
Figure (4.19)	Effect of width of steel stiffener on ultimate load capacity	87
Figure (4.20)	Effect of thickness of steel tube for section (80*80) on ultimate load capacity	90
Figure (4.21)	Effect of thickness of steel tube for section (250*250) on ultimate load capacity	91
Figure (4.22)	Effects of arrangement, number, and spacing of steel stiffeners on ductility of CFST column	94
Figure (4.23)	Effect of steel thickness on ductility	96
Figure (4.24)	Effect of steel stiffener width on ductility of CFST column	98

Figure (4.25)	Typical finite element deformed meshes of the stiffened CFST columns C1	99
Figure (4.26)	Typical finite element deformed meshes of the stiffened CFST columns C2	100
Figure (4.27)	Typical finite element deformed meshes of the stiffened CFST columns C3	101
CHAPTER 5		
Figure (5.1)	Relationships between b/t and P_{FEM} /P	106
Figure (5.2)	Relationships between F_y and P_{FEM} /P	109
Figure (5.3)	Relationships between f_{cu} and P_{FEM} /P	112

LIST OF TABLES

CHAPTER 2				
Table (2.1)	Strength classes of concrete in EC4 (2004)	22		
CHAPTER	3			
Table (3.1)	Geometric and material properties (present research)	50		
Table (3.2)	Comparison between test (2009) and FEM results (by author) present research	50		
CHAPTER	4			
Table (4.1)	Features and ultimate load capacities of the columns with square cross section 80x80 mm	59		
Table (4.2)	Features and ultimate load capacities of the columns with square cross section 250x250 mm	60		
Table (4.3)	Features and ultimate load capacities (N_{u}) of the columns	61		
CHAPTER	5			
Table (5.1)	Comparison between ultimate load results from the FEM and those predicted by different codes with various b/t ratio	105		
Table (5.2)	Comparison between ultimate load results from the FEM and those predicted by different codes with various F_{y}	108		
Table (5.3)	Comparison between ultimate load results from the FEM and those predicted by different codes with various $F_{\rm cu}$	111		