Pharmacist-led intervention in iron overloaded children with beta thalassemia major

A thesis submitted for the fulfillment of Master's degree in pharmaceutical sciences (Clinical Pharmacy)

Submitted by

Salma Mohamed Ibrahim Bahnasawy

Demonstrator at Clinical Pharmacy department Faculty of Pharmacy - Ain Shams University

Supervised by

Prof. Dr. Manal Hamed El Hamamsy

Professor of Clinical Pharmacy

Faculty of Pharmacy - Ain Shams University

Prof. Dr. Nagham Samy El Beblawy

Professor of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. Lamia Mohamed El Wakeel

Assistant professor of Clinical Pharmacy

Faculty of Pharmacy - Ain Shams University

التدخل الصيدلى لأطفال انيميا البحر المتوسط (ثلاسيميا الكبرى) الذين يعانون من تراكم الحديد

رسالة مقدمة للحصول على درجة الماجستير في العلوم الصيدلية (صيدلة الكلينيكية)

مقدمة من

الصيدلانية / سلمى محمد إبراهيم بهنساوى

معيده بقسم الصيدلة الإكلينيكية كلية الصيدلة ـ جامعة عين شمس

تحت إشراف

ارد منال حامد الحمامصي

استاذ الصيدلة الاكلينيكية كلية الصيدله - جامعة عين شمس

اد نغم محمد سامی الببلاوی

استاذ طب الأطفال كلية الطب – جامعة عين شمس

د . لمياء محمد الوكيل

أستاذ مساعد الصيدلة الاكلينيكيه كلية الصيدله ـ جامعة عين شمس

Acknowledgments

First, all my gratitude to my creator, to "Allah" for blessing and guiding me to this way and honoring me to be in the service of these angels on his earth during my study. Alhamdulillah for his continuous merciful messages via all the hands that supported me to keep going regardless of any despair. Alhamdulillah for guiding me to any good deed in this work and I hope that he pardons me for any shortening.

I would like to express my deepest appreciation to all the children who participated in this study and their parents. I admit that you were a turning point in my life and I learned a lot from you.

I'm deeply thankful to Prof. Dr. Manal Hamed El-Hamamsy, for her sincere help, valuable guidance and continuous support in completing this work.

I'm very grateful to Prof. Dr. Nagham Samy El Beblawy who provided me with kind advice and assistance whenever I need with her friendly and cheerful character.

I extend my gratitude to Dr. Lamia Mohamed El Wakeel for her loving support, valuable efforts, precious time and mostly for giving me the hope and the space to be.

I would like to express my love and gratitude to my sister Menna, to my sincere friends; Sara Refaat, Eman El-Awady and Amal Kamal, for standing by me and giving me a part in your life.

Finally, I would like to thank all the members of the Clinical Pharmacy department, faculty of pharmacy, Ain Shams University. Thanks for all the times we spent together and for sharing experiences.

Salma Mohamed Bahnasawy

Dedication

To the kindest heart I've ever met in my life. To the one who granted us her whole life without waiting anything in return. To my great Mom ,,

"You were always the motive for me to success just to please your heart. I'm totally indebted to you for everything I achieved in my life. May Allah accept all your good deeds with us."

To the soul of my Dad "

"I hope that you were here today, but it's all about what Allah wants."

May Allah send his mercy upon you and accept you in his paradise."

Table of Contents

LIST OF TABLES	VII
LIST OF FIGURES	IX
LIST OF ABBREVIATION	XI
ABSTRACT	XI
LITERATURE REVIEW	15
PART I: THALASSEMIA	15
Definitions and History	15
Epidemiology	16
Beta Thalassemia Syndromes	16
Iron overload	27
Management of BTM	34
PART II: CLINICAL PHARMACY SERVICES	43
Clinical pharmacy:	43
Role of the clinical pharmacist	43
Pharmaceutical care:	44
Principles of practice for pharmaceutical care	
Definitions of problems associated with pharmacotherapy	51
Drug-related problems (DRPs)	53
Impact of pharmaceutical care	55
AIM OF THE WORK	58
PATIENTS AND METHODS	60
RESULTS	68
DISCUSSION	93
CONCLUSION	101
RECOMMENDATIONS	103
SUMMARY	105
APPENDICES	109

REFERENCES	133
الملخص العربي	١١

List of Tables

TABLE 1 CLINICAL SYNDROMES OF B-THALASSEMIA	18
TABLE 2 RECOMMENDATIONS FOR TRANSFUSION THERAPY	37
TABLE 3 RECOMMENDATIONS FOR USE IRON CHELATION THERAPY	40
TABLE 4 CATEGORIES OF DRUG THERAPY PROBLEMS (DTP) AND CAUSES BY CIPOLLE ET A	۱L.
	54
TABLE 5 PATIENT DEMOGRAPHICS FOR BOTH GROUPS	68
Table 6 Patient clinical evaluation	69
TABLE 7 BASELINE MEDICATIONS ADMINISTERED BY BOTH TEST AND CONTROL GROUPS	70
TABLE 8 DRUG-RELATED PROBLEMS IN THE INTERVENTION GROUP AT BASELINE	71
TABLE 9 BASELINE LAB PARAMETER FOR BOTH GROUPS	72
Table 10 PedsQL™ quality of life scores in control & intervention groups at	
BASELINE	73
Table 11 PedsQL™ Healthcare satisfaction scores in control & intervention	
GROUPS AT BASELINE	74
TABLE 12 DRUG-RELATED PROBLEMS IN THE INTERVENTION GROUP AT BASELINE AND AFTI	
6 MONTHS	
TABLE 13 SERUM FERRITIN LEVELS IN CONTROL AND INTERVENTION GROUPS AT BASELINE	
AND AFTER 6 MONTHS	77
Table 14 Percent change of Serum Ferritin Levels in Control and Intervention A	
THE END OF THE STUDY	
Table 15 Mean Serum ferritin levels in control and intervention groups at	
BASELINE, 3 MONTHS AND AFTER 6 MONTHS	79
TABLE 16 POST-HOC TEST FOR SERUM FERRITIN LEVELS OVER THE STUDY PERIOD USING	
BONFERRONI PAIRWISE COMPARISON	79
TABLE 17 SERUM CREATININE LEVELS IN CONTROL AND INTERVENTION GROUPS AT BASELII	
AND AFTER 6 MONTHS	
TABLE 18 MEAN SERUM CREATININE LEVELS IN CONTROL AND INTERVENTION GROUPS AT	
BASELINE, 3 MONTHS AND AFTER 6 MONTHS	
TABLE 19 SERUM ALT LEVELS IN CONTROL AND INTERVENTION GROUPS AT BASELINE AND	
AFTER 6 MONTHS	
Table 20 Median Serum ALT Levels in control and intervention groups at	J_
BASELINE, 3 MONTHS AND AFTER 6 MONTHS	83
DASELINE, S INICIALIS AND ALLEN O MICINITIS	0

Table 21 Median PedsQL™ quality of life scores in control and intervention	
GROUPS AT BASELINE AND AFTER 6 MONTHS	. 85
Table 22 Median PedsQL™ healthcare satisfaction scores in control and	
INTERVENTION GROUPS AT BASELINE AND AFTER 6 MONTHS	. 89
Table 23 Correlation between serum ferritin levels and $PedsQL^{tm}$ modules to	TAL
SCORES	. 91

List of Figures

FIGURE 1 MECHANISM OF INEFFECTIVE ERYTHROPOIESIS AND HEMOLYSIS IN THALAS	SEMIA
	20
FIGURE 2 PATHOPHYSIOLOGY OF SEVERE FORMS OF B—THALASSEMIA	21
FIGURE 3 THE SKULL X - RAY IN BTM	23
FIGURE 4 THE FACIAL APPEARANCE OF A CHILD WITH BTM	23
FIGURE 5 PERIPHERAL BLOOD SMEARS IN BTM	25
Figure 6 Flow chart showing an approach to diagnosis of the thalassemi	Α
SYNDROMES	26
FIGURE 7 NORMAL PHYSIOLOGY OF IRON HOMEOSTASIS	28
Figure 8 Intracellular Iron Homeostasis	32
FIGURE 9 HEPCIDIN PRODUCTION IS MODULATED BY SUPPRESSIVE EFFECTS OF	
ERYTHROPOIESIS AND STIMULATORY EFFECTS OF IRON OVERLOAD	35
FIGURE 10 PROCESS OF PHARMACEUTICAL CARE PRACTICE	51
FIGURE 11 PROBLEMS ASSOCIATED WITH PHARMACOTHERAPY	51
FIGURE 12 CATEGORIES OF DRUG-RELATED PROBLEMS	53
FIGURE 13 SCHEMATIC REPRESENTATION OF THE STUDY DESIGN	61
FIGURE 14 PIE CHART SHOWING PERCENTAGE OF USE OF DIFFERENT IRON CHELATOR	RS IN
THE CONTROL GROUP (LEFT) AND INTERVENTION GROUP (RIGHT)	71
FIGURE 15 PIE CHART SHOWING BASELINE DRUG-RELATED PROBLEMS IN THE	
INTERVENTION GROUP AT BASELINE	72
Figure $16\ D$ rug-related problems in the intervention group at baseline at	ND
AFTER 6 MONTHS	75
FIGURE 17 BOXPLOT OF SERUM FERRITIN LEVELS IN CONTROL AND INTERVENTION	
GROUPS AT BASELINE AND AFTER 6 MONTHS	77
FIGURE 18 BOXPLOT OF PERCENT CHANGE OF SERUM FERRITIN LEVELS IN CONTROL	AND
INTERVENTION AT THE END OF THE STUDY	78
Figure $19~M$ ean serum ferritin levels in control and intervention groups	AT.
BASELINE, 3 MONTHS AND AFTER 6 MONTHS	80
Figure 20 Boxplot of Peds $QL^{\intercal M}$ quality of life total score in control and)
INTERVENTION GROUPS AT BASELINE AND AFTER 6 MONTHS	84
Figure 21 Median Peds QL^{TM} quality of life domain scores for interventio	N
AND CONTROL GROUPS AT THE END OF THE STUDY	86
Figure 22 Boxplot of PedsQL $^{\text{TM}}$ healthcare satisfaction total score in coi	NTROL
AND INTERVENTION GROUPS AT BASELINE AND AFTER 6 MONTHS	87

GURE 23 MEDIAN PEDSQL™ HEALTHCARE SATISFACITON DOMAIN SCORES FOR	
INTERVENTION AND CONTROL GROUPS AT THE END OF THE STUDY	88
Gure 24 Correlation between serum ferritin levels and PedsQL $^{\scriptscriptstyleTM}$ healthca	١RE
SATISFACTION TOTAL SCORE.	91

List of Abbreviation

ACCP	American College of Clinical Pharmacy
ADE	Adverse drug event
ADR	Adverse drug reaction
ALT	Alanine aminotransferase
APhA	American Pharmacist Association
BTM	Beta Thalassemia Major
CBC	Complete blood count
DFO	Deferoxamine
DFP	Deferiprone
DFX	Deferasirox
DNA	deoxyribonucleic acid
DRP	Drug-related problem
EMH	Extramedullary hematopoiesis
Hb	Hemoglobin
Hct	Hematocrit
HRQoL	Health-related quality of life
ICT	Iron chelation therapy
IE	Ineffective erythropoiesis
IV	Intravenous
LIC	Liver iron concentration
MCV	Mean corpuscular volume
MRI	Magnetic resonance imaging
NTBI	Non-transferrin bound-iron
Qol	Quality of life
RBC	Red Blood Cell
SC	Subcutaneous
SCr	Serum creatinine
SF	Serum ferritin
SQUID	Superconducting quantum interference device
TIF	Thalassemia International Federation
UKCPA	United Kingdom Clinical Pharmacy Association
WBC	White blood cell

Abstract

Clinical pharmacist-provided services in iron overloaded beta-thalassemia major children; a new insight to patient care

Abstract of the XXXVI World Congress of the International Society of Hematology Hosted by the British Society for Haematology, 18–21 April 2016, Glasgow, UK. Published in the British Journal of Haematology (bjh), Volume 173, Issue Supplement S1, Pages 1-191, April 2016

Iron overloaded β -thalassemia major (BTM) children have high risk for delayed sexual and physical maturation, liver, heart diseases, and reduced life expectancy. The lifelong need to use iron chelators along with its unpleasant administration, side effects and lack of awareness regarding iron overload risks, all hamper BTM patient compliance to iron chelators. This study evaluates the impact of clinical pharmacist provided services on the outcome of iron overloaded BTM children.

A prospective randomized controlled study was conducted at Pediatric Hematology Clinic, Children's Hospital, Ain Shams University from November 2014 to July 2015. Forty-eight BTM children (8-18 years) with serum ferritin >1000 µg/l were randomly assigned to two groups (n=24/group); **Control group**, received standard medical care **-Intervention group**, received standard medical care plus clinical pharmacist provided services which included; detection of drug-related problems (DRPs) and their management, patient education regarding disease nature and iron chelators using especially designed educational series, providing patient-tailored medication chart detailed with drug dose, frequency and administration precautions.

The 2 groups were comparable at baseline in patient healthcare satisfaction, quality of life (QoL), both assessed by PedsQLTM related modules, and serum ferritin (SF) levels. After 6 months of study implementation, there was a highly significant difference between the 2 groups (control vs intervention) in; SF levels (Mean: 3871 μ g/l vs 2362 μ g/l, P=0.0042), patient healthcare satisfaction (Median: 24.47 vs 90.29, P<0.0001) and QoL (Median: 49.84 vs 63.51, P=0.0049). In the intervention group, comparing baseline to end of study, DRPs decreased from 64 to 4, number of noncompliant patients decreased from 24 to 3, SF levels significantly decreased (mean: 3949 μ g/l vs 2362 μ g/l, p<0.0001).

After 6 months of clinical pharmacist intervention, there was an improvement in patient compliance to iron chelators, healthcare satisfaction, QoL and SF levels. Clinical pharmacist can positively impact the outcome of BTM children.

Keyw	ords:
------	-------

Beta thalassemia major, Iron overload, Clinical pharmacy, Drug-related problems, Iron chelation therapy

Literature review i)Thalassemia

Literature Review

Part I: Thalassemia

Definitions and History

The thalassemia syndromes are a heterogeneous group of inherited anemias characterized by defects in the synthesis of one or more of the globin chain subunits of the hemoglobin tetramer. The clinical syndromes associated with thalassemia arise from the combined consequences of inadequate hemoglobin (Hb) production that causes diminished Hb tetramers, hypochromia and microcytosis, and the imbalanced accumulation of globin subunits, causing precipitation of unpaired globin chains, ineffective erythropoiesis (IE) and hemolysis. (*Edward J. Benz*, 2013; Giardina and Rivella, 2013)

Thalassemia results from a reduction in the rate of synthesis of one or more of the globin chains. Usually, the synthesis of either the α or the β chains of Hb A ($\alpha_2\beta_2$) is impaired. Thalassemias are named according to the chain with reduced or absent synthesis to either α -thalassemia or β -thalassemia (*Giardina and Rivella, 2013; Loukopoulos, 2014*). The thalassemias are quantitative disorders as the primary lesion lies in the amount of globin produced. However, some rare forms of thalassemia are characterized by the production of structurally abnormal globin chains in reduced amounts. These thalassemic hemoglobinopathies share features of thalassemia as well as those of structural hemoglobinopathies (e.g., sickle cell anemia) (*Giardina and Rivella, 2013*).

β-Thalassemia was first described in 1925 by Cooley and Lee. They described four children with anemia, splenomegaly, mild hepatomegaly, and mongoloid facies. Later on, these characteristics became the typical findings in young children with untreated β-thalassemia major (BTM), often referred to as Cooley's anemia (*Cooley and Lee*, 1925). In 1932, Whipple and Bradford published a paper outlining the detailed autopsy studies of children who died of this disorder (*Whipple and Bradford*, 1932). Because of the high incidence of patients of Mediterranean descent with this disorder, Whipple called the disease Thalassic (Greek for "great sea") anemia, which was subsequently changed to thalassemia (*Whipple and Bradford*, 1936). In the 1940s, more studies illustrated the genetic basis for this anemia where severe homozygous condition became known