CA-125 and Severity of Preeclampsia

Thesis

Submitted for the Partial Fulfillment of Master Degree in Obstetrics and Gynecology

Presented By Marwa Mohamed Ibrahim

M.B., B.Ch. Ain Shams University (2011) Resident in Al-salam Specialized Hospital

Under Supervision of

Prof. Dr. Hassan Tawfek Khairy

Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Sherif Hanafi Hussain

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed Bahaa Eldin

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Hassan Tawfek Khairy**, Professor of Obstetrics and Gynecology Faculty of Medicine – Ain Shams University for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr.** Sherif **Hanafi Hussain**, Assistant Professor of Obstetrics and Gynecology
Faculty of Medicine – Ain Shams University Care for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Ahmed Mohamed Bahaa Eldin,** Assistant Professor of Obstetrics and Gynecology

Faculty of Medicine – Ain Shams University for her great help,
outstanding support, active participation and guidance.

Marwa Mohamed Ibrahim

This work is dedicated to . . .

My beloved father, to whom \P owe everything \P ever did in my life and will achieve.

My mother for always being there for me and all the nights she stayed with me.

My husband for being support me and God's gift to me, my backbone

Finally my son light of my life

سورة البقرة الآية: ٣٢

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Protocol	
Introduction	1
Aim of the Work	10
Review of literature	11
Patients and Methods	48
Results	55
Discussion	72
Summary	79
Conclusion	82
References	83
Arabic Summary	

List of Tables

Table No.	Title Page N	Vo.
Table (1):	Criteria for diagnosis of preeclampsia, (diastolic blood pressure is determined based upon the fifth Korotkoff sound	
Table (2):	(disappearance) with patient sitting) The presence of one or more of the following criteria are features of severe preeclamptic disease	
Table (3):	Criteria for diagnosis of gestational	10
	1	16
Table (4):	Conditions associated with high levels of CA-125	45
Table (5):	Comparison between the three studied groups (control, mild and severe preeclampsia) according to age, parity, number of abortions and gestational age	56
Table (6):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to systolic and diastolic B.P.	
Table (7):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to platelet count and albumin in urine.	57
Table (8):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to AST and ALT.	
Table (9):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to serum creatinine and uric acid	60

List of Tables cont...

Table No.	Title Page 1	No.
Table (10):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to estimated fetal	
Table (11):	weight and birth weight	
Table (12):	Frequency of complications in patients with severe preeclampsia.	
Table (13):	Comparison between the three studied groups (controls, mild and severe preeclampsia) according to CA125.	
Table (14):	Correlation between CA125 and other variables in controls, patients with mild and severe preeclampsia.	
Table (15):	Diagnostic accuracy of CA125 to differentiate between controls and patients with severe preeclampsia.	
Table (16):	Diagnostic accuracy of CA125 to differentiate between patients with mild	
Table (17):	and severe preeclampsia Best cut off point to differentiate between controls and patients with preeclampsia	

List of Figures

Fig. No.	Title Page	No.
Figure (1):	Showing the four major hypertensive disorders related to pregnancy	11
Figure (2):	Shows the difference in trophoblastic invasion and arteriolar remodeling between normal and preeclamptic pregnancies whereas placenta in preeclamptic pregnancy shows defective implantation which is characterized by	
	incomplete invasion of the spiral arteriolar wall by extravillous trophoblasts and results in a small-caliber vessel with high	
	resistance	21
Figure (3):	PIGF and sVEGFR-1 concentrations trends during pregnancy.	22
Figure (4):	Showing endothelial dysfunction in preeclampsia	25
Figure (5):	Pathways by which reduced uterine perfusion pressure (RUPP) and placental ischemia may lead to endothelial and cardiovascular dysfunction during	20
Figure (6):	pregnancy. Two-stage disorder of preeclampsia. Stage 1 is poor placentation at early stage of pregnancy and stage 2 is placental	26
Figure (7):	oxidative stress at late stage of pregnancy Shows high resistance uterine artery	29
_	Doppler at 23 weeks with increased S/D ratio and diastolic notching	37
Figure (8):	MUC16 structure. Model shows the three domains of MUC16 and potential location	
Eigene (0):	of the CA125 epitope in a tandem repeat	43
Figure (9):	Flow chart of the patients included in this study.	55

List of Figures cont...

Fig. No.	Title	Page	No.
Figure (10):	Comparison between the three st groups (controls, mild and s	severe	
Figure (11):	preeclampsia) according to platelet concerns to between the three starting groups (controls, mild and supreeclampsia) according to albumurine	tudied severe in in	59
Figure (12):	Comparison between the three st groups (controls, mild and s	tudied severe	
Figure (13):	preeclampsia) according to AST and Ast Comparison between the three st groups (controls, mild and spreeclampsia) according to	severe serum	
Figure (14):	creatinine	udied severe	63 63
Figure (15):	Comparison between the three st groups (controls, mild and s preeclampsia) according to mod delivery	udied severe	65
Figure (16):	Frequency of complications in pa with severe Preeclampsia.		66
Figure (17):	Comparison between the three st groups (controls, mild and s	udied severe	
Figure (18):	preeclampsia) according to CA125 Diagnostic accuracy of CA125 differentiate between controls	5 to and	
Figure (19):	patients with severe preeclampsia Diagnostic accuracy of CA125 differentiate between patients with and severe preeclampsia.	5 to	69

List of Abbreviations

Abb.	Full term
ACOG	American College of Obstetricians and Gynecologists
	Alanine aminotransferase
Ang-1	
Ang-2	
Ang-II	Angiotensin II
<i>AST</i>	Aspartate aminotransferase
<i>AT1-AA</i>	Angiotensin II type 1 receptor autoantibody
<i>AT1-AB</i>	Angiotensin II type 1 receptor antibody
<i>BKCa++</i>	Large conductance calcium-activated potassium channels
<i>BMI</i>	Body mass index
<i>BP</i>	
	Cancer Antigen-125
	Central nervous system
	C-reactive protein
	Computed Tomography
	Disseminated intravascular coagulation
<i>DM</i>	Diabetes mellites
<i>DNA</i>	Deoxyribonucleic acid
ET-1	Endothelin-1
<i>ffDNA</i>	Free fetal DNA
<i>GWLS</i>	Genome-wide linkage analyses
<i>hCG</i>	Human chorionic gonadotropin
<i>hCG-h</i>	Hyperglycosylated human chorionic gonadotropin
<i>HELLP</i>	Hemolysis, elevated liver enzymes, low platelet count
<i>HTN</i>	Hypertension
<i>IBI</i>	Inter-birth interval
<i>IL</i>	Interleukin
_	Inter quartile range
	Intrauterine fetal demise
	Intrauterine growth restriction
<i>IV</i>	
<i>LMP</i>	Last menstrual period

List of Abbreviations cont...

Abb.	Full term
MRI	Magnetic resonance image
	Neonatal intensive care unite
	Neonard intensive care unite
	Nitric oxide
	Ovarian cancer 125
	Odds Ratio
	Plasminogen activator inhibitor-type 1
	Pregnancy-associated plasma protein-A
	Polymerase chain reaction
	Preeclampsia
	Pulsatility index
	Placental growth factor
	Resistive index
	Ribonucleic acid
	Receiver Operating Characteristic
	Reactive Oxygen Species
	Reduced uterine perfusion pressure
	Standard deviation
	Soluble fms-like tyrosine kinase-1
	Sialic acid-binding Ig-like lectin-9
	Serous retinal detachment
	Soluble endothelial cell-specific tyrosine kinase receptor-2
STOX-1	Storkhead box-1
	Soluble vascular endothelial growth factor receptor-1
	Tumor necrosis factor
	Total peripheral resistance
	Thromboxane
<i>US</i>	Ultra sonography
	Utero-Placental Vascular Insufficiency
	Vascular endothelial growth factor
	World Health Organization

Abstract

By statistically analyzing data, a positive correlation between preeclampsia and systolic blood pressure, diastolic blood pressure, platelets count and serum uric acid. A negative correlation between preeclampsia and gestational age at time of delivery. We found no significant correlation between preeclampsia and maternal age.

There is statistically significance between CA-125and preeclampsia for normal and mild group to sever group (P<0.01), but weak sensitivity (67.5%) and specificity(52.5%).

In pregnancy, serum CA-125 levels are increased in early pregnancy and immediately after birth implicating the disintegration of the maternal decidua (i.e., blastocyst implantation and placental separation) as a possible source of the tumor marker elevation.

This study was conducted at Ain Shams University Maternity Hospital to assess free serum CA-125in pregnant women with preeclampsia in the third trimester to find out possible relation between the level of CA-125and severity of preeclampsia.

Keywords: Serous retinal detachment - Tumor necrosis factor- Vascular endothelial growth factor- World Health Organization

Introduction

re-eclampsia, defined as hypertension and proteinuria after 20 weeks of gestation, affects approximately 2-8% of pregnant women and may lead to severe maternal and neonatal complications (*Duley*, 2009).

Preeclampsia with its complications such as prematurity, IUGR, perinatal asphyxia and abruptio placentae is one of major causes of maternal and fetal morbidity and mortality due to its morbid course so it is necessary to identify those at risk for the illness and take precautions (*Gerulewicz-Vannini et al.*, 2006).

The etiology of preeclampsia is unknown, although several risk factors have been identified as primiparity, advanced maternal age ethnicity and multiple pregnancies. Recent studies show that treatment with low-dose aspirin may reduce the risk of early-onset preeclampsia, i.e., preeclampsia diagnosed before 34 weeks of pregnancy, which usually is a severe form of the disease (*Roberge et al., 2012*).

The pathophysiologic abnormalities of preeclampsia are numerous. Some of the reported abnormalities include abnormal implantation, generalized vasospasm, vascular endothelial dysfunction, angiogenic factors imbalance, immune and inflammatory mechanisms (*Redman et al.*, 2012).

Several methods have been reported for the prediction of preeclampsia including maternal characteristics, doppler

ultrasound, calcium/creatinine ratio and serum uric acid. Other methods have been investigated recently as placental growth factor, soluble vascular endothelial growth factor receptor-1, soluble fms-like tyrosine kinase-1, soluble endoglin, free fetal nucleic acids, angiopoietins and pregnancy-associated plasma protein-A (D'Anna et al., 2011).

CA-125 is one of the tumor markers in hybridoma family, the most widely used serum marker in the detection of ovarian tumor from surface epithelium (Radka et al., 2013).

Threshold concentrations of CA-125 in healthy person are below 35 IU/mL, CA-125 levels are increased in 80%-85% of women in the advanced stages of ovarian cancer and in 50% of women with stage I disease. Elevated serum levels of CA-125 are found in physiological conditions as menstruation and pregnancy and levels also increased in pathological conditions as endometriosis, fibroid, pelvic inflammatory disease, ovarian hyperstimulation syndrome, end-stage liver disease and a variety of gynecological and non-gynecological neoplasms (Alper et al., 2007).

In pregnancy, serum CA-125 levels are increased in early pregnancy and immediately after birth implicating the disintegration of the maternal decidua (i.e., blastocyst implantation and placental separation) as a possible source of the tumor marker elevation (Ayaty et al., 2007).

AIM OF THE WORK

Research hypothesis:

CA -125 may be elevated in pregnant women with preeclampsia.

Research question:

- In pregnant women with preeclampsia, dose serum CA-125 level elevate?
- The aim of this work is to study the changes in serum CA-125 level in pregnant women with preeclampsia.