CD127⁺ T-Cells In Chronic Hepatitis C Virus Infected Patients

Thesis

Submitted for Partial Fulfillment of Master Degree
In Clinical and Chemical Pathology

By

Tahani Emhemed Eswesy Mohamed

MB BCh Faculty of Medicine, Sirte University

Supervised By

Professor/ Mona Mohamed Rafik

Professor of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University

Doctor/ Rania Ahmed Abo Shady

Assistant professor of Clinical and Chemical Pathology

Faculty of Medicine

Ain Shams University

Doctor/ Nesrine Aly Mohamed

Lecturer_of Clinical and Chemical Pathology

Faculty of Medicine

Ain Shams University

2015

First and foremost, I feel always indebted to ALLAH, the Most Merciful, Who gives me power to accomplish this work.

I would like to express my deepest appreciation and sincere gratitude to Professor/Mona Mohamed Rafik Professor of Clinical and Chemical Pathology, Faculty of Medicine - Ain Shams University, for her sincere help, constant encouragement, constructive criticism, and valuable guidance, I was truly honoured to work under her supervision.

I would like also deepest appreciation and sincere gratitude to Doctor/Rania Ahmed Abo Shady, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine - Ain Shams University, for her help and encouragement during the whole work.

I am deeply indebted to Doctor/Nesrine Aly Mohamed, lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University.

I would like also to thank the clinic pathology department staff, Ain Shams University in general.

I am extremely grateful to my country hoping that it will sattle down where love and peace disappiathe all over. Additinally, my late brother AboBaker who gifted himself for his country hoping that he is in paradise.

I owe huge debt to my parent who was keeping encouraging me during my study. I would like to thank my family for their love and care all the times.

I owe great respect to my husband my little two cute kids Arwa and AbdAlla who supported me to overcome the hard times and enjoyment of the good times in lovely Egypt.

List of abbreviations

ALT	alanine aminotranferase.
Anti-HCV	antibodies to hepatitis C virus
ASR	analyte specific reagent
AST	Aspartate aminotranferase
Bcl-2	B-cell leukemia /lymphoma.
bDNA	brached DNA.
CARD	Caspase activation and recruitment domain.
cART	combination antiretroviral therapy.
cDC	conventional dentritic cell.
CDC	center for disease control and prevention.
Cdc42	Cell division control protein 42 homolog.
CFSE	carboxy-fluroscein-succinimidyl ester.
CLIA	chemoilluminescence immune assay.
CLDN	Claudin
CMF-PBS	calcium- and magnesium-free phosphate-buffered saline.
CMV	cytomegalo virus
CRH1	cytokine receptor homology class 1
CTL	cytotoxic T lymphocyte.
CTLA4	cytotoxic T lymphocyte association antigen 4.
EBV	Epstein-Barr Virus.
ECD	extra-celluar domain.
EFn	Ephrin.
eLF	eukaryotic initiation factor.
ELISA	enzyme liked immune-sorbent assay
Eomes	Eomesodermin.
ER	endoplasmic reticulum.
Erk-2	extracellular-signal-regulated kinases
ETS	E-transformation specific squance
FACS	fluorescence-activated cell sorter.
FDA	food and drug administration
FDC	follicular dendritic cells.
Flu	influenza.
FNIII	fibronectin type III

FOXO1	forkhead box O1
FoxP3	forkhead box P3
FRCs	fibroblastic reticular cells.
Fsc	Forward sscatter
GABPa	GA-binding protein
GC	glycocorticiod.
Gfi-1	growth factor independent-1:
GITR	glycocoticoid-induced TNF receptor.
GTP	guanine triphosphate.
HBV	Hepatitis B Virus
HCC	Hapato-cellular carcinoma
HCV	Hepatitis C Virus
HCV Ag	Hepatitis C Virus core antigen.
HCVpp	HCV pseudoparticles
HCWs	high risk healthcare workers
HDAC1	Histone deacetetylase
HDL	High density lipoprotein.
HIV	Human Immunodeficiency virus
HLA	Human leukocyte antigen.
HVR	Hyper variable region.
ICD	intracelluar domain.
ICOS	inducible costimulatory molecule.
IFNα	interferon alpha.
IFNY	interferon gamma.
IFN _β	interferon beta.
IgG	immunoglobulin G.
IL	interlukine.
IPS	interferon- beta promoter stimulator
IPS-1	interferon- beta promoter stimulator protien-1
IQR	interquartile range
IRES	internal ribosome entry site.
IRF3	INF regulatory factor 3.
ISGS	interferon stimulating genes.
JaK1 and JaK3	Janus kinas 1 and 3
KIR/HLA	killer cell IG like receptor/.human leukocyte antigen.

KLRG1	Killer cell lectin-like receptor subfamily G member 1.
LCMV	lymphocytic chorromeningitis virus.
LIP	lymphopenia induced proliferation.
LOD	low limit of detection.
MAPK	mitogen-activated protein kinase
MAVS mDC	Mitochondrial Antiviral signaling protein. myliod dendritic cells.
	•
MHC	major histocompatability complex.
mIL7Rα	Membrane bound interlukin-7 receptor
miRNA	MicroRNAs
MPEC	memory precursor effector cells.
MQ	macrophage.
mRNA	massenger RNA
m-tuberculosis	Mycobacterium tuberculosis
NAT	nucleic acid test
NK	natural killer cell.
NS	non-structural.
NTR	non-translated region
P56LCK	p56- lymphocyte-specific protein tyrosine kinase
PAT	parental anti-chistosomal therapy
PBMCs	prephira bloodl mononuclear cells.
PBS	phosphate buffer saline.
PD-1	programmed death 1
pDC	plasmcytoid dentritic cells.
PI3K	phosphotidylinositide-3 kinase
PKR	protein kinase receptors
PP2A	protein phosphatase 2 a.
qRT-PCR	quantative RT-PCR
RA	rheumatoid arthritis.
RAG	recombination activating gene
RASA1	Ras GTPase-activating protein 1
Ras GAP	Ras GTPase-activating protein
RBV	Ribavirine.
RC	replication complex
RdRp	RNA-dependent RNA polymerase.
RIBA	Recombinant immunoblot assay.
-	·

RIG-1	retinoic acid-inducible gene 1
RNA	Ribonucleic acid.
RNAi	RNA interference.
RSV	respiratory syncytial virus.
RTE	recent thymic emigrant.
RT-PCR	reverse transcriptase polymerase chain reaction.
RUO	research use only.
rNTP	ribonucleoside triphosphates
sCD	Soluble CD
SCID	severe combined immunodeficiency.
SH2	src homology.
SIL7R	soluble interlukin-7 receptor.
SLEC	short lived effector cell.
SOCS3	suppressor of cytokine signaling 3
SR-BI	scavenger receptor class B type I.
STAST 1	signaling transducer and activators of transcription.
Ssc	Side scatter
SVR	sustained virological rate.
S/co ratio	significance of signal-to-cut off ratio.
T1D	type 1 diabetes
TCR	T cell receptors
TFh	T-follicular helper.
Th1 and Th2	type 1 and type 2 helper T cells.
TIM-3	T-cell immunoglobulin and mucine domain-contianing molecule 3.
TLR	toll-like receptor.
TMA	transcription-mediated amplification.
TMD	transmembrane domain.
TRIF	Toll/IL-1 domain containing adaptor inducing IFN - p
T-reg	T-regulatory cells.
TSLP	thymicstromal lymphoid protein.
TSLPR	thymicstromal lymphoid protein receptors.
VAMP-associated proteins	vesicle association membrane protein
VISA	virus induced signaling adapter.
WHO	World Health Organization.
γc	Gamma chain

List of Table:

Table No.	Title	Page
(1)	The different generations of immunoassays for anti-HCV	26
(2)	Role of NAT in HCV diagnosis.	29
(3)	Commercial HCV RNA quantification tests.	30
(4)	Cellular Behaviors Observed during Persistent Viral Infection.	47
(5)	Comparison between chronic HCV infection (Group I) and healthy individual (Group II) as regards CD3 ⁺ CD4 ⁺ CD127 ⁺ .	91
(6)	Comparison between chronic HCV infection (Group I) and high risk healthy care workers (Group III) as regards CD3 ⁺ CD4 ⁺ CD127 ⁺ .	92
(7)	Comparison between healthy individuals (group II) and high risk healthy care workers (Group III) as regards CD3 ⁺ CD4 ⁺ CD127 ⁺	93
(8)	Comparison between chronic HCV infection (Group I) and healthy individual (Group II) as regards CD3 ⁺ CD4 ⁺ CD127 ⁻ .	94
(9)	Comparison between chronic HCV infection (Group I) and high risk healthy care workers (Group III) as regards CD3 ⁺ CD4 ⁺ CD127 ⁻ .	95

Table No.	Title	Page
(10)	Comparison between healthy individual (Group II) and high risk healthy care workers (Group III) as regards CD3 ⁺ CD4 ⁺ CD127 ⁻ .	96
(11)	Comparison between chronic HCV infection (Group I) and healthy individual (Group II) as regards CD3 ⁺ CD8 ⁺ CD127 ⁺ .	97
(12)	Comparison between chronic HCV infection (Group I) and high risk healthy care workers (group III) as regards CD3 ⁺ CD8 ⁺ CD127 ⁺ .	98
(13)	Comparison between healthy individuals (group II) and high risk healthy care workers (group III) as regards CD3+ CD8+ CD127 ⁺	99
(14)	Comparison between chronic HCV infection (Group I) and healthy individual (Group II) as regards CD3+ CD8+ CD127	100
(15)	Comparison between chronic HCV infection (Group I) and high risk health-workers (Group III) as regards CD3+ CD8+ CD127	101
(16)	Comparison between Healthy individuals (Group II) and high risk health-workers (Group III) as regards CD3+ CD8+ CD127	102

List of figures:

Figure No.	Title	Page
(1)	Topological arrangements of HCV proteins	06
(2)	Life cycle of hepatitis C virus	13
(3)	HCV attenuates innate immune responses	36
(4)	The innate and the adaptive immune response in hepatitis c virus infection	41
(5)	Characteristics of Acute Versus Persistent Viral Infection Viral infection	42
(6)	Helper functions of CD4 T cells during persistent virus infection	48
(7)	IL-7 Structure	56
(8)	IL-7 receptors	57
(9)	CD127 structure	59
(10)	IL-7-mediated signalling pathways	62
(11)	IL-7 induced-recycling/degredattion of CD127	65
(12)	Cross-talk between signals from self-pMHC and IL-7	68
(13)	Representative dot plots of flow cytometry	88

Table of contents

ACKNOWLEDGMEBNTS	II
LIST OF ABBREVIATIONS	III
LIST OF TABLE:	VII
LIST OF FIGURES:	IX
TABLE OF CONTENTS	X
INTRODUCTION	1 -
AIM OF THE WORK	3 -
LITERATUR REVIEW	
CHAPTER I: CHRONIC HEPATITIS C	4 -
CHAPTER II: IL-7 RECEPTOR A-CHAIN(CD127)	56 -
SUBJECTS AND METHODS	84 -
RESULTS	90 -
DISCUSSION	103 -
SUMMARY AND CONCLUSION	108 -
RECOMMENDATIONS	109 -
REFERENCES	110 -
ARABIC SUMMARY	- 140 -

Introduction

Hepatitis C virus (HCV) is associated with viral persistence in the majority of patients and spontaneous resolution in only a minority; although precise mechanisms governing outcome remain incompletely defined, abundant data demonstrated that the vigor and breadth of the cellular immune response in the earliest stages of infection is critical (*Smyk-Pearson et al.*, 2006).

Acute HCV infection is frequently associated with a strong virus-specific CTL response that declines exponentially over time, particularly in those who develop chronic infection (*Cox et al.*, 2005).

Patients with acute HCV infection demonstrated that the loss of CD127 expression on total naive and memory/effector populations and on viral-specific CTLs is an introduction to viral persistence. Patients with acute-resolving HCV infection express levels of CD127 on CD4+ and CD8+ T cells intermediate to normal and patients with acute-to-chronic infection (*Golden masson et al.*, 2006).

HCV-infected individuals showed a lower level of CD127 expression in T_{CM} (T Central Memory) and effector CD4+ T cells . CD127 expression was also decreased in naive and T_{EM} (T Effector Memory) CD4+ T cells. Chronic HCV infection per se was closely associated with down-regulation of CD127 expression on CD4+ T cells regardless of naive/memory phenotype. Variations in different fractions of CD4+ T cells, including the phenotypic profile and expression level of CD25 and CD127, may be associated with low efficiency of immune response in chronic HCV infection (*Shen et al., 2010*).

Attenuation and dysfunction of T cell immune response is considered the main cause of HCV chronicity. In this aspect, it should be useful to monitor the speed and fluctuation of the "flow strain" from naive T cells to activated effector cells in clinical management of HCV-infected individuals, which will provide more direct information than viral load for evaluating the association between HCV persistence and inefficient immune responses (*Shen et al.*, 2010).

Chronic HCV is characterized by CTLs that are functionally impaired (decreased antiviral cytokine production, cytotoxicity, and proliferative capacity) (Wedemeyer et al., 2002) or anergic, and may exhibit phenotypic features of early stages of differentiation (*Lucas et al.*, 2004).

The expression of the IL-7R α -chain (CD127) is a marker of activated effector CD8 T cells that are more likely to survive and differentiate into protective memory T cells (*Prlic et al.*, 2002). In humans, data demonstrate that CD127 is a marker of early viral-specific CTLs destined to become memory CTLs (*van Leeuwen et al.*, 2005).

Since the expression of CD25 and CD127 controls naive and memory T cell homeostasis, proliferation, and differentiation, IL-7/IL-7 receptor (CD127) signaling plays a potential role in determining the outcome and severity of HCV infection (*Shen et al.*, 2010).

Aim of the work

The aim of the present study is to determine the association between $\mbox{CD127}^{\tiny +}$ T-Cells and \mbox{HCV} chronicity .

Chapter I: Chronic hepatitis C

Hepatitis C virus was discovered in 1989, it infects about 3% of the world population (*Lavanchy*, *2011*). Hepatitis C virus (HCV) is a RNA virus known to infect humans and chimpanzees, causing similar disease in these two species. HCV is most often transmitted parenterally but is also transmitted vertically and sexually (*Centers for Disease Control and Prevention. MMWR Recomm Rep. 1998*). HCV is up to 4 times more infectious than Human Immunodeficiency Virus (HIV) (*Te and Jensen, 2010*). HCV is a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide (*Ruggieri et al., 2014*). Globally, approximately 170 million people are chronically infected with the HCV (*Nguyen and Nguyen, 2013*). It is estimated three million new infections occur annually (*Escobar-Gutiérrez et al., 2013*).

Disease distribution and epidemiology:

The virus exhibits a very high degree of genetic diversity that is classified six genotypes and sub-classified more than 80 subtypes by phylogenetic analysis. The various genotypes and subtypes of HCV have been associated with different epidemiological and geographical spread patterns. Genotypes 1 and 2 are globally distributed; genotype 3 is predominant in Asia, North America and parts of Europe; similar regional patterns of endemic diversity have been found for genotype 4 in Europe, Middle East and Central Africa, for genotype 5 in parts of Africa and Europe, and for genotype 6 in Southeast Asia and North America (*Zhao et al.*, 2012).

The estimated prevalence of HCV in Africa is 5.3% (*Pybus et al.*, 2003). Egypt has the highest worldwide prevalence (17.5%). Egypt unusually high prevalence is attributable to the history of unsterile

injection equipment used for mass treatment of the general population with parenteral antischistosomal therapy (PAT) from the 1920s to the 1980s (*Frank et al.*, 2000; Global Burden of Hepatitis C Working Group). In the United States 2.7-3.9 million peoples are living with HCV infection (*Smith et al.*, 2012). In Asia the majority of these individuals come from the western Pacific and Southeast Asia regions, the prevalence is 94.6 million persons combined (*Nguyen and Nguyen*, 2013). The WHO(World Health Organization.) reports that 75% of HCV-infected individuals developing chronic liver disease, 1.6% of them progress to Hepatocellular carcinoma (HCC), a condition with a mortality rate >80% (*Maheshwari and Thuluvath*, 2010).

The lack of available information indicates that hepatitis C is still a neglected disease in many countries. However, from the scanty data presented, there is no doubt that HCV is a major health problem that requires greater attention in Africa. With availability of effective therapies against HCV, physicians, researchers and health care decision makers need to improve efforts in diagnosis, management and prevention of HCV in Africa. The relatively high cost of treatment enforces the need for a systematic approach for this condition so that resources are used most effectively (*Karoney and Siika, 2013*).

HCV structure:

HCV is the sole member of the Hepacivirus genus of the Flaviviridae family of small, enveloped, single strand positive sense RNA viruses (*Lindenbach et al.*, 2007). The 9.6 kb viral genomic RNA contains a single open reading frame flanked by highly structured non-translated regions (NTRs) (Figure 1) (*Briana et al.*, 2012).