

Radiation Synthesis and Characterization of Some Functionalized Polymers for Possible Uses

Thesis submitted by **Nehad Ahmed Ahmed Mohmmed Ahmed**

Assistant Lecture
National Center for Radiation Research and Technology
Atomic Energy Authority, Cairo, Egypt

For The Degree of Doctor of Philosophy in Chemistry (Organic Chemistry)

Thesis supervisors

Prof. Dr. Al-Sayed A. Soliman

Prof. of Organic Chemistry Faculty of Science, Ain Shams Univesity Prof. Dr. El-Sayed A. Hegazy

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology

Prof. Dr. Hassan A. Abd El Rehim

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology Prof. Dr. Amr El-Hag Ali Sayed

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology

Acknowledgment

I would like to express my deep gratitude and thanks to *Prof. Dr. Al-Sayed A. Soliman*, Faculty of Science, Ain Shams University, for his interest, and deep concern in this work.

Deepest thanks and sincere gratitude to *Prof. Dr. El-Sayed A. Hegazy*, Prof. of Radiation Chemistry, ex-Chairman, National Center for Radiation Research and Technology (NCRRT), for suggesting, planning the point of research, his eminent supervision and valuable discussions. Also, for his encouragement and support throughout this work.

Great thanks and gratitude due to *Prof. Dr. Hassan A. Abd El-Rehim*, Prof. of Radiation Chemistry, Vice Chairman, Egyptian Atomic Energy Authority, for his eminent supervision, discussions and guidance.

I offer my sincerest gratitude to my supervisor, *Prof. Dr. Amr El-Hag Ali Sayed*, National Center for Radiation Research and Technology, who for his continuous guidance, honest assistance interest, wise guidance, kind supervision and continuous encouragement throughout this work.

I would like to offer my deep thanks to *Assoc. Prof. Dr. Amany Ismail Arafat* Assoc. Prof. of Radiation Chemistry, National Center for Radiation Research and Technology for her supervision encouragement and support throughout this work. Also for her honest assistance to have this work done.

Many thanks are due to all colleagues and staff members of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT) for their help and facilities provided throughout this work.

"I would like to give big thanks for my mother, dear husband my life partner, my sisters and all my family members for their endless support and care

Special thanks to my sons.

There is no enough words to express my gratitude to all of you"

Thank you.....

Table of content

List of Figures List of Tables Aim of work

Chapter I Introduction

Biomaterials	1
Ceramics	1
Metals	1
Polymers	2 3
Hydrogels	3
Classification of hydrogels	3
Synthesis of Hydrogels	4
A-Hydrogel Synthesis by Physical Crosslinking	4
B- Hydrogel synthesis by chemical crosslinking	5
Radiation synthesis of hydrogels	6
Characteristic properties of polymeric hydrogel	8
Swelling properties	8
Mechanical properties	8
Biocompatible properties	9
Applications of hydrogels	9
Hydrogel as drug delivery system	10
Mucoadhesive drug delivery system	10
Mucoadhesion	11
Mucus layer	11
Oral mucosa	12
Polymeric materials to be used as mucoadhesives	14
Mechanism of mucoadhesion	15
Sites for Mucoadhesive Drug Delivery Systems	16
Buccal Drug Delivery System	16
Biomaterials in Tissue Engineering	18
Roles of Biomaterials in Tissue Engineering	19
Characteristics of successful scaffold	
Types of scaffold	19
Hydrogel Scaffold	22
Chapter II	
Literature Review	
Biomaterials	23
Hydrogel smart materials for drug delivery	43
Mucoadhesive Copolymer Hydrogel for Buccal Delivery	51

Ĺ

Chapter III	
Materials and Experimental Techniques	
Materials	79
Experimental Techniques	
Preparation of Dextran/PAAc hydrogels	79
Preparation of NOCMCs /PVA/ PHEMA terpolymer hydrogels	79
Synthesis of N,O-Carboxymethyl Chitosan	79
Determination of degree of substitution	81
Preparation of NOCMCs /PVA/ PHEMA terpolymer hydrogels	82
Determination of Gelation	82
Determination of Swelling	83
FT-IR spectroscopy measurement	83
Ultraviolet (UV) measurements	83
Preparation of drug-Loaded Hydrogels and drug release	84
Microscopic Observation	84
Thermogravimetric Analysis (TGA)	84
Evaluation of (Dextran/PAAc) copolymer hydrogels as a	84
mucoadhesive for drug release	
In vitro evaluation of mucoadhesion Strength	84
Surface pH determination	86
Residence time determination	86
Sterilization of scaffold	87
Propagation of CaCo cell line by enzyme treatment and MTT test	87
Chapter IV	
Results and Discussion	
Radiation synthesis of Dextran/Acrylic acid copolymer hydrogel	89
	0)
as mucoadhesive drug carrier for buccal delivery system. Radiation Synthesis of (Dextran/PAAc) Copolymer Hydrogel	90
using Gamma irradiation.	90
	02
Optimizing the preparation conditions of (Dextran/PAAc)	92
copolymer hydrogels.	0.2
Effect of total Feed solution concentration and composition and	93
irradiation does on gelation.	0.5
Fourier Transforms Infrared Spectroscopy.	95
Swelling behavior of (Dextran/PAAc) copolymer hydrogels.	97
1-Time dependent swelling.	97
2- Effect of ionic strength on the equilibrium swelling of	99
Dextran/PAAc).	

3- pH dependent swelling of (Dextran/PAAc) copolymer hydrogels.	100
Thermogravimetric Analysis (TGA).	102
Surface Topography of Dextran/PAAc Copolymer hydrogel.	102
Evaluation of the potential applicability of the prepared	104
(Dextran/PAAc) copolymer hydrogel as mucoadhesive carrier for	100
buccal drug delivery.	
Mucoadhesion Strength.	106
Residence time evaluation.	108
Surface pH evaluation.	108
Swelling in Saliva.	1109
Swelling kinetics.	110
Buccal drug delivery Evaluation.	116
B. Radiation synthesis of (N, O-carboxymethyl chitosan/poly	121
vinylalcohol/2-hydroxyethyl methacrylate) terpolymer	121
hydrogels for possible use in the field of tissue engineering.	
Synthesis of N, O-carboxymethylchitosan.	122
Characterization of the prepared N, O-carboxymethyl-chitosan.	124
Quantitative determination of carboxymethylation degree.	124
Structural characterization of the prepared N, O- carboxymethyl	124
chitosan.	123
FTIR.	125
XRD.	126
Thermal stability analysis.	127
Synthesis of (N, O-carboxymethylchitosan/poly vinyl alcohol/2-	127
hydroxyethyl methacrylate) terpolymer hydrogels.	129
Optimization of the preparation conditions:	129
Degree of gelation.	129
Characterization of NOCMCs /PVA/HEMA terpolymer	131
Hydrogels.	131
Investigating the swelling characteristic.	131
pH dependent swelling of (NOCMCs /PVA/PHEMA) Terpolymer	134
Hydrogels of Different Compositions.	134
Structure Topographical study of NOCMCs/PVA/PHEMA	137
terpolymer hydrogel.	137
Uses of NOCMCs /PVA/PHEMA prepared hydrogel as scaffold	139
	139
for tissue engineer. Call culture of the Prepared NOCMCs/DVA/DHEMA Hydrogal	1.40
Cell culture of the Prepared NOCMCs/PVA/PHEMA Hydrogel. MTT determination of results.	140 140
Microscopic observation of cell morphology.	140
References.	141
References.	1+3

Summery	and conclusion.
Summery	in Arabic.

159

List of Figures

Figure (1):	The oral cavity structure.	13
Figure (2):	Schematic diagram of buccal mucosa.	14
Figure (3):	Mechanistic approach of mucoadhesion.	16
Figure (4):	11	18
	engineering approach based on the introduction of a	
	scaffold.	
Figure (5):		21
rigare (3).	engineering.	21
Figure (6):		85
Figure (7):	± • •	91
1 15010 (7).	reactant.	71
Figure (8):	Schematic diagram represents the possibilities of free	92
	radical combination and hydrogel formation.	
Figure (9):	• •	94
8	on their gelation degree.	
Figure (10		95
8	gelation degree of (Dextran/PAAc) prepared at different	
	at different AAc content.	
Figure (11		96
1 -50-10 (11	hydrogel and (c) polyacylic.	, 0
Figure (12		98
•	copolymers hydrogels of different AAc content.	
Figure (13		100
υ .	(Dextran/PAAc) copolymer hydrogel of different PAAc	
	content.	
Figure (14): pH dependent swelling of (Dextran/PAAc) copolymer	101
8 (hydrogels of different PAAc content.	
Figure (15	• •	103
1 18010 (10	of different PAAc content.	100
Figure (16		104
6 (copolymer hydrogels of different acrylic acid content.	
Figure (17		105
1 18010 (17	swollen in artificial saliva solution, prepared at different	100
	PAAc content.	
Figure (18		107
1 15010 (10	prepared copolymer hydrogel to mucos membrane.	107
Figure (19	· · · · ·	110
115000 (1)	hydrogel in saliva solution at different PAAc content in	110
	artificial.	
	ur une rat.	

Figure (20):	Kinetic curve of (Dextran/PAAc) hydrogels in artificial saliva at different PAAc contents.	113
Figure (21)	t ^{1/2} vs swelling kinetic curves of (a) (Dextran/PAAc) hydrogels in artificial saliva at different PAAc contents.	114
Figure (22):	Time dependent swelling of Dextran/PAAc copolymers hydrogel placed on richly saliva wet sponge at different PAAc content.	116
Figure (23):	Time dependent release profile of Propranolol HCl from Dextran/PAAc copolymer hydrogels of different PAAc content.	117
Figure (24):	Time dependent release profile of Cefadroxil from Dextran/PAAc copolymer hydrogels of different PAAc content.	118
Figure (25):	Time dependent release profile of Trifluoperazine from Dextran/PAAc copolymer hydrogels of different PAAc content.	119
Figure (26):	Effect of PAAc content on the cumulative release profile of (Dextran/PAAc) copolymer hydrogels in saliva using different therapeutic agents.	120
Figure (27):	Schematic diagram represents the chemical conversion of chitosan into N, O- carboxymethylchitosan.	123
Figure (28):	Potentiometric determination of the carboxymethylation degree of the prepared carboxymethyl chitosan.	124
Figure (29):	FTIR spectrum of (a) pure chitosan, (b) NOCMCs.	125
Figure (30):	X-ray diffraction patterns of (a) chitosan and (b) carboxymethylchitosan.	127
Figure (31):	TGA traces of (a) Chitosan and (b) N, O-Carboxymethyl chitosan.	128
Figure (32):	Effect of total exposure dose on produced gel fraction of the (NOCMCs /PVA/PHEMA) terpolymer hydrogels prepared at different total feed solution concentration.	130
Figure (33):	Effect of NOCMCs content on the gel fraction of (NOCMCs/PVA/PHEMA) terpolymer hydrogel.	131
Figure (34):	Time dependent swelling of NOCMCs/PVA/PHEMA terpolymer as a function of total feed solution concentration.	132
Figure (35):	Time dependent swelling of NOCMCs /PVA/PHEMA terpolymer of prepared at different NOCMCs concentration.	133
Figure (36):		135
Figure (37):		136

	content in aqueous HCl/NaOH solutions.	
Figure (38):	SEM micrograph of NOCMCs/PVA/PHEMA terpolymer	138
	hydrogel swollen at different pHs.	
Figure (39):	SEM micrograph of NOCMCs/PVA/PHEMA terpolymer	139
	hydrogel swollen at pH 7.2 and prepare using different	
	irradiations doses.	
Figure (40):	Effect of irradiation dose used in the preparation of	141
	NOCMCs/PVA/PHEMA terpolymer on the viability of	
	CaCo cells as a function of time.	
Figure (41):	Optical microscopic observation of the control sample;	142
	cultured in a glass surface without scaffold.	
Figure (42):	Optical microscopic observation of the 3day cultured	142
	CaCo cells in NOCMCs/PVA/PHEMA terpolymer	
	prepared at 20 kGy; (a) on the hydrogel, (b) under the	
	hydrogel.	
Figure (43):	Optical microscopic observation of the 3day cultured	143
	CaCo cells in NOCMCs/PVA/PHEMA terpolymer	
	prepared at 30 kGy; (a) on the hydrogel, (b) under the	
	hydrogel.	
Figure (44):	Optical microscopic observation of the 3day cultured	143
	CaCo cells in NOCMCs/PVA/PHEMA terpolymer	
	prepared at (a) 40 kGy and (b) 50 kGy	

List of Tables

Table (1):	Chemical structure of the employed materials.	80
Table (2):	Chemical constituents and formulation of saliva	81
	solution.	
Table (3):	Effect of PAAc content on the residence time of the	108
	prepared Dextran/PAAc copolymer hydrogel to	
	mucos membrane. The hydrogels prepare at total	
	concentration 40%. Irradiation does; 30 kGy using	
	distilled water as a solvent.	
Table (4):	Effect of PAAc content on the surface pH of the	109
	prepared copolymer hydrogel in artificial saliva	
	solution. The hydrogels prepare at total concentration	
	40%. Irradiation does; 30 kGy.	
Table(5):	Diffusion parameters of (Dextran/PAAc) copolymer	115
	hydrogel of different compositions in artificial saliva.	