TRANSFER OF GLUCANASE GENE TO RESIST LATE BLIGHT DISEASE IN POTATO

By

HEBA SAYED SHEBL

B.Sc. Agric. Sci. (Genetics), Ain Shams University, 2008

A Thesis Submitted in Partial Fulfillment

of

The Requirements for the Degree of

Master of sciences

In

AGRICULTURAL SCIENCES

(Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

Approval Sheet

TRANSFER OF GLUCANASE GENE TO RESIST LATE BLIGHT DISEASE IN POTATO

By

HEBA SAYED SHEBL

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 2008

This thesis for M.Sc. degree has been approved by:

Dr. Abdel-Raheem Tawfeek AbdeL-Reheem
Prof. Emeritus of Genetics, Faculty of Agriculture, El Mania University

Dr. Abdel-Fatah Abdel-Kader Mohamed Awad
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Mahmoud Ahmed Abd El-Hafiez Sallam
Prof. of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Mohamed Abdel-Salam Rashed
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 25 / 3 / 2017

TRANSFER OF GLUCANASE GENE TO RESIST LATE BLIGHT DISEASE IN POTATO

By

HEBA SAYED SHEBL

B.Sc. Agric. Sci. (Genetics), Ain Shams University, 2008

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Prof. Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mahmoud Ahmed Abd El-Hafiez Sallam

Prof. of Genetic, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Emad Anis Metry

Head Research of Genetics, Agriculture Genetics Engineering Research Institute Agriculture Research Center

ABSTRACT

Heba Sayed Shebl Mohammed.Transfer of Glucanase Gene to Resist Late Blight Disease in Potato. Unpublished M.Sc.,Thesis, Department of Genetic, Faculty of Agriculture, Ain Shams University,2017.

Potato late blight is a pandemic disease caused by the highly virulent *Phytophthora infestans* fungus. Two different types of explants (internode and leaf) were cultured for induction and regeneration from three potato cultivars (Spounta, Diamont and Desiree). The highest value of Desiree leaf explants was 80% induced from develop callus in 2.4.Dmedia. The best value of maximum shoot regeneration was 90.3 for Spounta in NAA and 4mg/L KIN media form internode and 88.4 for Desiree in BA, IAA and GA3 media from leaf proved to be more effective. Cloning of glucanase gene in pRI 201-AN plasmid which carrying kanamycin resistance (nptII) gene were perfomed and followed by transformation in *Agrobacterium tumefaciens* strain LBA4404 which used for plant transfection. Nucleotide and amino acid sequences of transformed *Agrobacterium* were analyzed. The putatively transgenic plants were confirmed using polymerase chain reaction (PCR) for genomic and cDNA.

Keywords: Potato, Late blight, Glucanase gene

ACKNOWLEDGEMENT

First of all, I would like to express my deepest thanks to "ALLAH" for helping me to carry out and complete this work.

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Mohamed Abdel El Salam Rashed.**, Professor of Genetics, Genetics Dept., Faculty of Agriculture, Ain Shams University for his continuous supervision, tremendous help, kind encouragement, sincere help criticism, facilities offered and valuable help while writing and revising this thesis. Great appreciation is also expressed to **Prof. Dr. Mahmoud Ahmed Abd El-Hafiez** Prof. of Genetics, Faculty of Agriculture, Ain Shams University for his continuous supervision, precious advices and for revising this thesis. I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Emad Anis Metry,** Deputy Director for Research, Agriculture of Genetic Engineering Research center, for continuous supervision, kind encouragement, precious advices during the progress of thesis work and the preparation and writing of the manuscript.

I would also like to express my deepest thanks and everlasting gratitude to **Prof. Dr. Ahmed mohammed**, Professor of Genetics, Agriculture Genetics Engineering Research Institute (AGERI).

I would also like to express my deepest thanks and everlasting gratitude to, **Mrs Mervet** for helping me in my work.

Many thanks to my colleagues; my lab mates, staff of Micro Propagation Technology Lab and friends whose timely help needs special mention., Agriculture Genetic Engineering Research Institute (AGERI), for their great help, encouragement and real cooperation during the progress.

Finally, I am indebted to my family for their great help and patience during this work, especially the mother, sister, brother and my husband for continuous encouragement and praying for me.

CONTENTS

	Page
LIST OF TABLES	VIII
LIST OF FIGURES	Vii
LIST OF ABBREVIATIONS	ix
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
1. Regeneration in potato	4
2. Biotic and a biotic stress combinations	5
2.1. Late blight history	6
2.2.Phytophthorainfestans is causal organism	6
2.3. Symptoms of late blight	7
3.Defence mechanisms	8
4.Glucanase	10
4.1.Possible Role of β-1, 3-Glucanases in Plant Defense	11
4.2. Classification of Plant β -1, 3-Glucanases	12
4.4.β-1, 3-Glucanase Genes in Transgenic Plants	13
5.In vitro transformation	13
5.1 The transformation of potato plants	14
5.2. The Mechanism of DNA Transfer	15
6.Molecular analysis of putative transgenic plants	15
6.1. Polymerase chain reaction (PCR)	15
6.2. Reverse transcription-polymerase chain reaction,	16
III. MATERIALS AND METHODS	18

I.Materials	
1.1 Plant Materials	18
1.2 Bacteria	18
2. Bacteriological media	18
2.1 Luria- Bertani broth (LB)	18
2.2 LB Agar medium	18
2.3 S.O.C. Medium	18
3. Supplements	19
3.1. Ampicillin	19
3.2 kanamycin	19
3.3 cefotaxine	19
3.4 X-gal	19
3.5 IPTG	19
3.6 Restriction Enzymes	19
4. Vectors	20
4.1 Plasmid pRI 201-AN was used in this study	20
4.2 A pGEM-T easy vector was obtained from (Promega)	20
5. DNA solutions	21
5.1 50X TAE buffer	21
5.2 Ethidium bromide	22
6.Computer software	22
7. DNA primers	22
2- Methods	
2.1 Regeneration from callus	23
2.2Gene cloning	23
2.2.1 Miniprep plasmid DNA system for glucanase gene	23
and expiration vector	
2.2.2 Polymerase chain reaction (PCR) for Glucanase gene	25
2.3 Cloning of PCR Products into pGEM®-T Easy	25
Vectors	
2.2.4Transformation of β-1, 3 glucanase (GLN) gene	25

intoDH10B high efficiency competent Cells	
2.2.5 Confirm of cloned glucanase gene into A pGEM-T	26
easy vector	
2.2.6 EcoRI restriction enzyme digestion	26
2.2.7 SalI restriction enzyme digestion	27
2.2.8 Plasmid purification	28
2.2.9 NdeI restriction enzyme digestion	29
2.2.10 Plasmid purification	29
2.2.11 Ligation of DNA	29
2.2.12 Transformation of pRI 201-AN plasmid into DH10B cell	30
2.2.13 Preparation of Agrobacterium	30
2.2.14 Transformation of plasmid into Agrobacterium	31
tumefaciens competent cells	
2.2.15 Sequencing and analysis of Glucanase gene.	31
2.3. Transformation of desiree potato cultivar via	31
Agrobacterium	
2.3 .1 Regeneration from callus	32
2.3.2 DNA extraction from transgenic desiree potato	32
cultivars	
2.3.3 Polymerase chain reaction (PCR) analysis.	33
2.3.4. Reverse transcription polymerase chain reaction	33
a. RNA isolation from transgenic Desiree potato plants	24
IV.RESULTS AND DISCUSSION	36
1 PCR amplification of glucanase gene	36
2 Inserted of glucanase gene into pGEM-T easy vector.	37
3 Inserted of glucanase gene into PRI 201-the plant	39
expression vector.	
4 Transformation of Agrobacterium tumefaciens	41

5. Nucleotide and amino acid sequence analysis of Glucanase	42
gene.	
6. Optimization of regeneration system in potato.	45
6.1. Plant regeneration capacity among potato cultivars	45
7. Shoots proliferation and development on regeneration	48
medium of potato plants cultivar Desiree.	
7.1. Molecular analysis of putative transgenic plants by using	50
PCR and RT-PCR analysis.	
7.1.1PCR detection for transformed potato plants	50
7.1.2 RT-PCR detection for transformed potato plants	51
SUMMARY	54
IIV REFERENCES	56
	71
الملخص العربي	

LIST OF TABLES

Table No.		Page
	Primer sequence, number of base, expected product for glucanase gene (GLN), pRI 201-AN vector (pRI) and NPT II gene (Kan).	24
	Regeneration of potato (<i>Solanum tuberosum L.</i>) cultivars Desiree, Spunta and Diamont	57
	Regeneration and transformation percentages of potato (<i>Solanum tuberosum L.</i>) cultivars of Desiree control and transgenic plant	60

LIST OF FIGURES

Fig. No.		Page
1	Restriction map and general specification of	20
	Plasmid pRI201-AN	
2	Restriction map and general specification of	21
	pGEM-T easy vector.(B)sequence of restriction	
	enzyme site of pGEM-T easy vector, the arrow	
	indicates the start of the transcription of the T7	
	RNA polymerase	
3	A flowchart showing cloning strategy of PCR	27
	amplified Gln- coding Sequence (1020 bp) in	
	pGMT easy vector	
4	A flowchart showing Cloning strategy of Digested	29
	Glucanase gene in pGEM®-T Easy Vector by	
	Restriction enzyme and insert it in pRI 201-AN	
	plant expression vector	
5	Amplified 1020bp fragment size of glucanase	37
	gene	
6	Restriction digestion of recombinant clone using	38
	restriction enzyme $EcoR1\ M = 1\ Kb$ ladder. Lane	
	1 =1020bp fragment size (Glucanase gene).Lane 2	
	= vector non digested with Glucanase gene	
7	Integration of glucanase gene into pGEM-T easy	39
	vector, as confirmed by the presence of the 1020	
	bp PCR-amplified glucanase fragment. M =1 Kb	
	ladder: Lane 1 to 4= fragment of glucanase gene	
8	Integration of glucanase gene into pRI 201-	40
	ANvector, as confirmed by the presence of the	
	1020 bp PCR-amplified glucanase fragment. M =1	
	Kb ladder: Lane 1 to 10= fragment of glucanase	
	gene: Lane11: negative control	
9	Integration of glucanase gene into pRI 201-	41

Fig. No.		Page
	ANvector, as confirmed by using pRI 201-AN	
	(reveres) and glucanase gene (forward) primer. M	
	=1 Kb ladder: Lane 1 to 10= fragment of	
	glucanase: Lane11: negative control	
10	. Agarose gel for PCR product of 1020bp fragment	42
	size glucanase gene from Transformated	
	agrobacteriumM: 1 Kb ladder; Lane 1: negative	
	control; Lane 2: positives(glucanase gene in pRI	
	201-ANvector) ;Lane 3 to 4:fragment of glucanase	
11	The nucleotide sequence and the predicted amino	43
	acid sequence of glucanase gene	
12	Sequences producing significant alignments	44
13	Callus formation from leaf (a,b), Internode (c,d)	46
	explants: Multiple shoot formation with Medium	
	(I) and Medium (II) of potato plants cultivar	
	Diamant, Spunta and Desiree, ; hardening under	
	glass house condition	
14	Colum's values show the differences in shoot	47
	percentage among three potato cultivars	
15	Callus induction and plant regeneration from	49
	leafexplants of Desiree potato cultivars	
16	A garose gel for PCR product: 1020bp fragment	50
	size of glucanase gene from the transgenic potato	
	lines using glucanase primers. M: 1 Kb ladder.	
	Lane 1: non transgenic potato line. Lane 2:	
	(clone2). Lane 3 to 6: transgenic potato lines	
17	Agarose gel for PCR product: 650bp fragment	51
	size of glucanase gene from the transgenic	
	potato lines using NPT II primers. Lane M: 1Kp	
	DNA ladder, Lane 1 to 2: Transgenic potato	
	lines, Lane 3: Non transgenic potato lines	

Fig. No.		Page
18	Verification of glucanase gene presence and	52
	incorporation into putatively transgenic potato	
	plants via RT-PCR analysis. Screening plants	
	showed the expected 1020bp band in several	
	individuals. Lane M: 100bp DNA ladder (gene	
	ruler TM Fermentas), Lane1: negative control, Lane	
	(2): represented putatively transgenic plants	
	(positive). Lane (3, 4): transformed potato plants	
19	Verification of glucanase gene presence and	53
	incorporation into putatively transgenic potato	
	plants via RT-PCR analysis. Screening plants	
	showed the expected 450bp band in several	
	individuals. Lane M: 100bp DNA ladder (gene	
	ruler TM Fermentas), Lane1: negative control, Lane	
	(2): represented putatively transgenic plants	
	(positive). Lane (3, 4): transformed potato plants	

LIST OF ABBREVIATIONS

BA : Benzyl amino purine

Bp : Base pair

° C : Celsius degree CaCl₂ : Calcium chloride

c DNA : Complementary synthesized from a mRNA

cm : Centimeter

dd H₂O Distilled deionized water
DNA : Deoxyribonucleic acid

DNA ase deoxyribo nuclease enzyme that catalyzesThe

hydrolyticcleavage of phosphodiesterlinkages in the

DNA backbone.

2,4-D : 2,4-dichlorophenoxyacetic acid

et al. Et alia

IAA Indole acetic acid

in vitro : In an artificial environment outside the

livingorganism

Kb : kilobase

Kinetin : Furfuryl amino purine

LB Luria : Bertani media

M : Molar
Min : Minute
Mg : Milligram
μg : Microgram
Ml : Milliliter
μL : Microliter
mM : Millimolar

mm

mRNA : Messenger ribonucleic acid MS Murashige and Skoog (1962)

Milimeter

NaOH : Sodium hydroxide

Nptll : Neomycin phosphor transferase gene

O. D. : Optical density

PCR : Polymerase Chain Reaction

P35S : Cauliflower mosaic virus 35S promoter

pH : Per hydrogen

RNA : Ribonucleic acid

Rpm : Revolutions per minute

RT-PCR : Reverse transcription polymerase chain reaction

TAE : buffer solution containing Tris base, aceticacid and

EDTA

Ti plasmid : Tumor inducing plasmid

UV : Ultraviolet

% : Percentage