STUDYING THE EFFECT OF DEFERIPRONE IN IMMUNOLOGICAL MODEL OF LIVER FIBROSIS

Thesis Presented By:

Dalia Abdulazim Ismail Ibrahim El-Khouly

B. Pharm. Sc. Ain Shams University (2004)
Assistant Lecturer of Pharmacology & Toxicology
Faculty of Pharmaceutical Sciences & Pharmaceutical Industries,
Future University

Submitted for the Partial Fulfillment of PhD Degree in Pharmaceutical Sciences (Pharmacology & Toxicology)

Supervised By:

Prof.Dr. Ebtehal El-Demerdash Zaki

Professor & Head of Pharmacology & Toxicology Department Faculty of Pharmacy, Ain Shams University

Prof.Dr. Azza Sayed Mohamed Awad

Professor & Head of Pharmacology & Toxicology Department Faculty of Pharmacy, Ahram Canadian University

Ass.Prof. Dr. Wesam Soliman El-Bakly

Associate Professor of Pharmacology & Therapeutics Faculty of Medicine, Ain Shams University

Dr. Reem Nabil Abulnaga

Lecturer of Pharmacology & Toxicology Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy- Ain Shams University 2017

Examination Board Approval Sheet

Name of candidate:

Dalia Abdulazim Ismail Ibrahim El-Khouly

Submitted to the Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University.

Approved by the committee in charge:

1. Dr. Samira Saleh Mostafa

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University.

2. Dr. Gouda Kamel Helal

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University.

3. Dr. Ebtehal El Demerdash Zaki

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University.

4. Dr. Azza Sayed Awad

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram University.

Head of Pharmacology and Toxicology Department

Prof.Dr. Ebtehal El Demerdash Zaki

Date: / / 2017

Pre-requisite Post-Graduate Courses

Besides the work presented in this thesis, the candidate has attended the following courses:

Special courses:

- 1. Pharmacology.
- 2. Clinical Pharmacology and Therapeutics.
- 3. Clinical Toxicology.
- 4. Selected topics in Pharmacology and Toxicology.

She has successfully passed examination in these courses and the comprehensive exam with general grade *Excellent*.

Head of Pharmacology and Toxicology Department

Prof.Dr. Ebtehal El-Demerdash Zaki

<u>ACKNOWLEDGMENT</u>

First of all, no words can express my deep thanks to Allah; who without his help; this work would have never been accomplished and may this work add to our good deeds to gain his kind mercifulness.

I would like to express my deep and sincere gratitude to my supervisor Prof.Dr. Ebtehal El-Demerdash, Professor of Pharmacology & Toxicology & Head of the Department, Faculty of Pharmacy, Ain Shams University, for her keen supervision, her valuable guidance and encouragement throughout the whole study. Her wide knowledge and her logical way of thinking have been of great value for me. She did her best to carry out this research as a part of project supported by the International Egypt-South Africa Joint Science & Technology Research Programme and in collaboration with University of Pretoria. I am profoundly grateful for her support and valuable instructions throughout this work.

Actually, I am greatly thankful to my supervisor **Prof.Dr. Azza Awad**, Professor of Pharmacology & Toxicology & Head of the Department, Faculty of Pharmacy, Ahram Canadian University, for her kind supervision, endless support and wealth of knowledge. I would like to express my deepest appreciation with sincere gratitude for her generous supervision that enabled me to reach my goals. I owe her a special word of thanks.

I wish to express my warm and sincere thanks to Ass. Prof. Dr. Wesam El-Bakly, Associate Professor of Pharmacology & Therapeutics, Faculty of Medicine, Ain Shams University, for her enthusiastic help and guidance leading to completion of this thesis. A very special thanks is paid to her for providing me with advice and facilities to complete all the practical work throughout the whole study. I thank her for her helpful guidance during writing this thesis.

Indeed, I owe special thanks to **Dr. Reem Abulnaga**, Lecturer of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University. I do

appreciate her effort and valuable time she sacrificed to me. I thank her for her helpful comments and discussion during writing this thesis.

During this work I have collaborated with many colleagues for whom I have great regard, and I wish to extend my warmest thanks to all those who have helped me with my work and especially my co-mates in this project. I would like to express my deep thanks to all members of Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University for their faithful co-operation. No words can express my deep gratitude for my friends in Pharmacology, Toxicology & Biochemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University for their kind support & nice wishes.

Finally, my profound gratitude goes to my family and especially to my dearest Father, **Prof.Dr. Abdulazim El-Khouly**, Professor of Physical Chemistry, Faculty of Science, Mansoura University who encouraged me to pursue this academic achievement. I am forever indebted to him for his encouragement, support & guiding me in this career. He was the first to plant in me the seeds of science and progressive thinking; he supported me with his utmost care and sincere advice during this journey. His death deprived him of reaping the fruitfulness of his efforts but I was aware of his satisfaction about the outcome of this research as far as it went and I am eternally grateful to him.

Most importantly, I would like to express my heartfelt thanks to my beloved mother, brothers & their families for their blessings, their endless love, wishes and support for the successful completion of this research.

ABSTRACT

Chronic hepatitis C (CHC) virus infection; affecting more than 170 million people worldwide; is a leading cause of progressive liver fibrosis, liver cirrhosis and hepatocellular carcinoma. Iron overload is one of mechanisms by which hepatitis C virus causes oxidative stress that may contribute to fibrosis and carcinogenesis in the liver. The present study was designed to assess the potential antifibrotic effect of the oral iron chelator deferiprone (DFP) and whether it can attenuate the severity of oxidative stress and inflammatory response during concanavalin A (Con A)-induced liver fibrosis in rats. Moreover, we assessed its additional usefulness to interferon-based therapy. To screen the hepatoprotective dose of DFP, rats were randomized and given different doses of DFP (5, 10, 25, 40 mg/kg, oral, respectively), 1 h before they were injected with Con A. For studying the potential antifibrotic mechanisms of DFP in chronic immunological model, male wister rats were treated with either DFP (5 mg/kg/day, oral, 3 times/week for 6 weeks) and/or pegylated interferon-α2b (1.5 µg/kg/week, s.c., for 6 weeks). Different markers of liver fibrosis were assessed including biochemical measurement of hydroxyproline content and immunohistochemical detection of alpha-smooth muscle actin and collagen expression using Masson trichrome stain. Markers of hepatotoxicity, oxidative stress and inflammation were also assessed. Histological examination was done using light and electron microscope. Fibrosis, oxidative stress & inflammatory markers were significantly ameliorated by treatment with DFP in comparison to the co-treatment with pegylated interferonα2b and DFP. Furthermore, histopathological examination and electron microscope confirmed the antifibrotic effect of DFP. Collectively these findings indicate that DFP can have potential antifibrotic effect in CHC patients.

Keywords: concanavalin A - deferiprone - fibrosis - hepatitis C - hepcidin - iron overload - immunological

Contents

Subject	Page
List of abbreviations	I
List of tables	X
List of figures	XI
Introduction	1
1. Liver Fibrosis	1
1.1. Definition	1
1.2. Etiology	1
1.2.1. Infection	1
1.2.2. Nonalcoholic steatohepatitis (NASH)	2
1.2.3. Metabolic diseases	2
1.3. Pathogenesis	3
1.3.1. Role of hepatic stellate cells (HSCs)	3
1.3.2. Role of other hepatic cells	6
1.3.3. Role of oxidative stress	10
1.3.4. Role of inflammatory cytokines	11
1.3.5. Fibrosis regression	12
1.4. Diagnosis of fibrosis	13
1.4.1. Invasive methods (Liver biopsy)	13
1.4.2. Noninvasive method	14
1.4.2.1. Imaging techniques	14
1.4.2.2. Serological assays	15
1.4.2.2.1. Biomarkers (Direct)	15
1.4.2.2.2. Surrogate (Indirect)	16

1.5. Therapeutic approaches	16
1.5.1. Eradication of the primary cause	17
1.5.2. Halting hepatocyte apoptosis	18
1.5.3. Mitigation of inflammatory and immune response	18
1.5.4. Down-regulation of HSCs activation	19
1.5.4.1. Cytokine-directed therapy	19
1.5.4.2. Reduction of oxidative stress	20
1.5.5. Induction of HSCs/hepatic myofibroblasts apoptosis	21
1.5.6. Promoting matrix degradation	22
1.5.7. Direct antifibrotics	22
2. Animal models of liver fibrosis	24
2.1. Chemically-induced fibrosis using hepatotoxic agents	24
2.1.1. Carbon tetrachloride	24
2.1.2. Thioacetamide	25
2.1.3. Dimethyl or diethyl nitrosamine	25
2.2. Cholestatic models of liver fibrosis	25
2.2.1. Bile duct ligation	26
2.2.2. d-Galactosamine	26
2.3. Models of NASH-associated fibrosis	26
2.4. Immunologically-mediated fibrosis	27
2.4.1. Schistosoma mansoni & heterologous serum	27
2.4.2. Concanavalin A (Con A)	28
3. Iron-related liver injury	30
3.1. ROS induction by iron	31
3.2. Iron overload and HCV	32

3.3. Effect of iron overload and HCV on hepatocytes proliferation	33
3.4. Hepcidin	37
4.Pegylated IFN-α2b	42
4. 1. Chemical and physical properties	42
4.2. Pharmacokinetics	45
4.3. Pharmacodynamics	45
4.4. Adverse effects	47
4.5. Specific considerations of Peg IFN-based treatment in HCV and its resistance	48
5.Deferiprone	51
5.1. Chemical & physical properties	51
5.2. Pharmacokinetics	53
5.3. Pharmacodynamics	54
5.4. Therapeutic uses	55
5.5. Adverse effects	56
Aim Of The Work	58
Materials And Methods	59
1. Design of the work	59
1.1. Screening the hepatoprotective dose of DFP against Con A-induced acute hepatotoxicity	59
1.2.Studying the potential antifibrogenesis mechanisms of DFP in chronic immunological model of liver fibrosis	60
2.Materials	62
2.1.Drugs	62
2.2.Animals	62
2.3.Ready-made kits	63
3. Methods	64
3.1. Preparation of liver homogenate	64
3.2.Hepatotoxicity Indices	65
cialize pure verifically induces	0.0

3.2.1.Determination of ALT	65
3.2.2. Determination of AST	68
3.2.3.Determination of serum total cholesterol	71
3.2.4.Determination of serum triglycerides	73
3.2.5. Determination of serum albumin	75
3.2.6.Determination of serum total and direct bilirubin	76
3.2.7. Determination of total protein	78
3.3. Histopathological examination	79
3.4.Electron microscopic examination	80
3.5.Oxidative stress markers	81
3.5.1. Determination of total antioxidant capacity of liver	81
3.5.2. Determination of GSH content in liver	83
3.5.3. Determination of lipid peroxides as MDA content in liver	84
3.6.Inflammatory markers	85
3.6.1. Immunohistochemical examination of CD4 $^+$ T-cells, NF- κ B, TNF- α , COX-2, and iNOS expression in liver	85
3.6.2. ELISA determination of IL-6 content in liver	88
3.6.3. ELISA determination of IFN-γ content in liver	92
3.7.Fibrosis markers	96
3.7.1.Immunohistochemical examination of α-SMA expression in liver	96
3.7.2. ELISA determination of TGF-β1 content in liver	98
3.7.3. Determination of collagen content in liver as hydroxyproline	102
3.7.4.Histopathological examination of liver using Masson's trichrome stain	106
3.8. Iron regulation	107
3.7.1. Determination of iron content in liver	107
3.7.2. Quantitative real-time polymerase chain reaction for the determination of hepcidin gene expression in liver	109

Statistical Analysis	118
Results	119
1.Screening the hepatoprotective dose of DFP against Con A- induced acute hepatotoxicity	119
1.1. Serum liver enzymes (ALT and AST) activities	119
1.2.Histopathological examination of liver using H&E stain	123
2.Studying the potential antifibrogenesis mechanisms of DFP in	
chronic immunological model of liver fibrosis	126
2.1.Hepatotoxicity indices	126
2.2.Histopathological examination of liver using H&E stain	140
2.3.Electron microscopic examination	143
2.4.Oxidative stress markers	146
2.5.Inflammatory markers	152
2.6.Fibrosis markers	170
2.7.Iron regulation	182
Discussion	187
Summary and Conclusions	194
References	198
الملخص العربي	1

List of abbreviations

A	Absorbance
4-AAP	4-aminoantipyrine
Ab	Antibody
ACEIs	Angiotensin-Converting Enzyme Inhibitors
ADP	Adenosine Diphosphate
Ag	Antigen
AI	Anemia of Inflammation
ALT	Alanine Aminotransferase
ANOVA	Analysis of Variance
AP-1	Activator Protein 1
ARB	Angiotensin-II Receptor Blockers
AST	Aspartate Aminotransferase
α- SMA	Alpha-Smooth Muscle Actin
ATF-6	Activating Transcription Factor-6
ATP	Adenosine Triphosphate
AUC	Area Under the Curve
BAX	BcL-2-Like Protein 4
BCG	Bromocresol Green
BcL-2	B-cell Lymphoma 2

BSA	Bovine Serum Albumin
Ca ⁺²	Calcium
Caspases	Cysteine-aspartic proteases
CBT	Cognitive Behavioral Therapy
CCl ₄	Carbon tetrachloride
CD 4 ⁺	Cluster of Differentiation 4 ⁺
cDNA	Complement DNA
CE	Cholesterol Esterase
СНС	Chronic Hepatitis C
Cmax	Maximum Serum Concentration
СО	Cholesterol Oxidase
Con A	Concanavalin A
CoNS	Coagulase-Negative Staphylococci
COX-2	Cyclooxygenase-2
Ct	Cycle threshold
CT	Connective Tissue
CTGF	Connective Tissue Growth Factor
CV	Central Vein
СҮР	Cytochrome P
CYP 450	Cytochrome P450
DFO	Deferoxamine

DFP	Deferiprone
DMT1	Divalent Metal Transporter 1
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
dNTPs	Deoxynucleotide triphosphates
ECM	Extracellular Matrix
e.g.	Example
ELISA	Enzyme-Linked Immunosorbent Assay
ER	Endoplasmic Reticulum
Fas-L	Fas Ligand
FDA	Food and Drug Administration
Fe	Iron
Fe ²⁺	Ferrous
Fe ³⁺	Ferric
FG	FibroGen
FMASU-REC	Faculty of Medicine Ain Shams University-Research Ethics Committee
gadd153	growth arrest and DNA-damage-inducible gene 153
GAS	Interferon-Gamma-Activated Site
GCS	D-Glutamyl-Cysteine Synthetase
G-CSF	Granulocyte-Colony Stimulating Factor
GGT	Gamma-Glutamyl Transferase

GK	Glycerol Kinase
GPO	Glycerol Phosphate Oxidase
GRP78	Glucose Regulated Protein 78
GSH	Reduced Glutathione
HA	Hyaluronic Acid
H & E	Hematoxylin and Eosin
HBV	Hepatitis B Virus
нсс	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HIF1-α	Hypoxia-Inducible Factor 1 alpha
4-HNE	4-hydroxy-2-nonenal
H_2O_2	Hydrogen Peroxide
HRP	Horseradish Peroxidase
HSCs	Hepatic Stellate Cells
IFN	Interferon
IFN-α	Interferon-alpha
IFN-γ	Interferon-gamma
IgG	Immunoglobulin G
IL-1	Interleukin 1
IL-6	Interleukin 6
IL-10	Interleukin 10
ILs	Interleukins