Evaluation of role of femur length / mid thigh circumference ratio in differentiation between small for gestational age but healthy fetuses and intrauterine growth restricted fetuses

Thesis

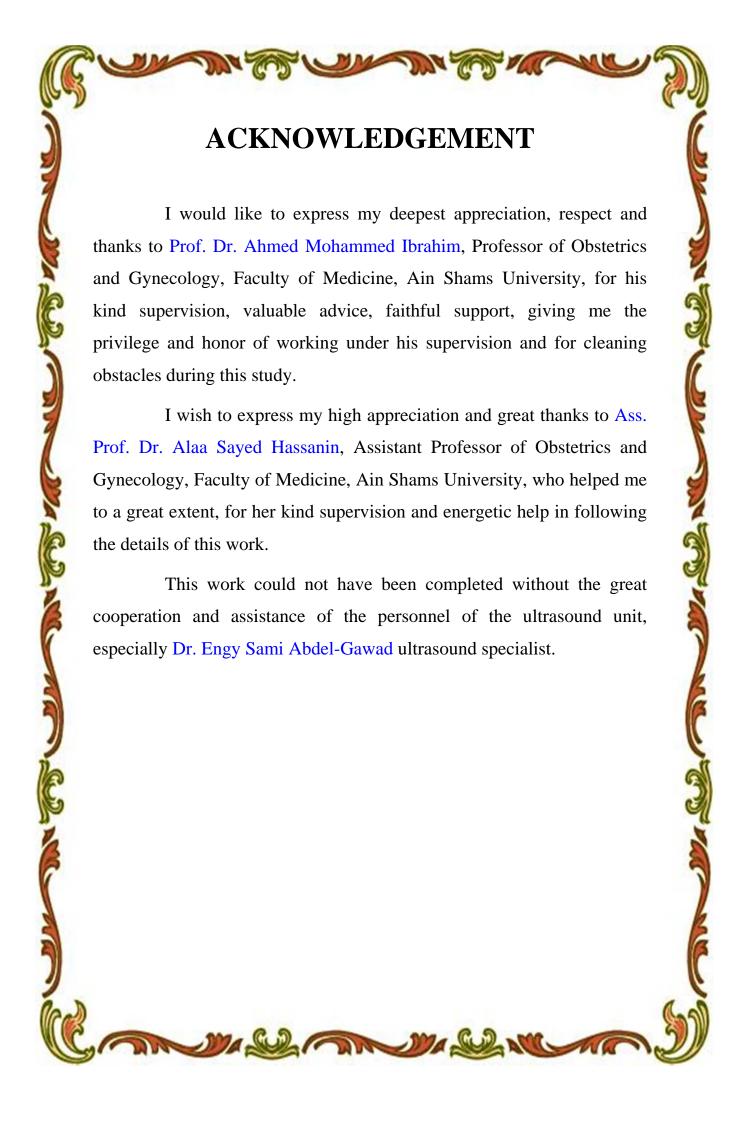
Submitted to the Faculty of Medicine, Ain Shams University

In Partial Fulfillment for the Degree of MASTER OF OBSTETRICS AND GYNECOLOGY

By

Enas Mohammed Abdel-Shafi Mohammed
MBBCh. Zagazig University, 2009
Resident
Department of Obstetrics and Gynecology
Al Qenayat Hospital

Under supervision of


Prof. Dr. Ahmed Mohamed Ibrahim

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Ass. Prof. Dr. Alaa Sayed Hassanin

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Content

	Page
List of figures	II
List of tables	IV
List of abbreviations	V
Protocol	VII
Introduction	1
Aim of the study	3
Review of literature	4
Fetal growth and weight	4
Ultrasound and fetal weight estimation	22
Role of thigh circumference in fetal weight prediction	30
Patient and methods	32
Results	38
Discussion	49
Summary	54
Conclusion	56
Recommendations	57
References	58
الماخص العرب	

List of figures

	Page
Figure (1): fetal growth curve	4
Figure (2): Picture of IUGR baby	10
Figure (3): Progressive umbilical artery wave form patterns with advancing severity were; a : normal umbilical artery	10
waveform, b : increased impedance to flow, c : absent end-diastolic flow, and d : reversed end-diastolic flow	19
Figure (4): Normal and abnormal MCA wave forms	20
Figure (5): Different Formulae used for estimation of birth	
weight by ultrasound	24
Figure (6): Transverse axial sonogram of the fetal head:	26
measurement of biparietal Figure (7): Abdominal Circumference (AC)	26
Figure (7): Abdominal Circumference (AC) Figure (8): Longitudinal sonogram of the fetal femur length (FL)	
Figure (9): Ultrasonic view showing mid thigh circumference	27
corresponding to 38 weeks' gestation	30
Figure (10): Sonographic views of the cross sectional area of the	
thigh at right angles to the long axis in the proximal,	31
maximum and distal portions	
Figure (11): femur length and mid thigh circumference of one of	25
the included cases	35
Figure (12): Flowchart of the patients in the study	37
Figure (13): Fetal biometric measures in patients with IUGR or	40
SGA babies.	40
Figure (14): FL/MTC ratio in patients with IUGR or SGA babies	40
Figure (15): AFI in patients with IUGR or SGA babies	41
Figure (16): UA RI and MCA RI in patients with IUGR or SGA babies	41
Figure (17): MCA PSV in patients with IUGR or SGA babies	42
Figure(18): Receiver-operating characteristic (ROC) curve for	
discrimination between patients with IUGR or SGA	43
using the BPD.	
Figure (19): Receiver-operating characteristic (ROC) curve for	43
discrimination between patients with IUGR or SGA using the HC.	43
Figure (20): Receiver-operating characteristic (ROC) curve for	
discrimination between patients with IUGR or SGA	44
using the AC.	
Figure (21): Receiver-operating characteristic (ROC) curve for	
discrimination between patients with IUGR or SGA	44
using the FL.	

Figure (22): Receiver-operating characteristic (ROC) curve for discrimination between patients with IUGR or SGA using the MTC.	45
Figure (23): Receiver-operating characteristic (ROC) curve for	
	45
discrimination between patients with IUGR or SGA	45
using the FL/MTC ratio.	
Figure (24): Receiver-operating characteristic (ROC) curve for	
	4.
discrimination between patients with IUGR or SGA	46
using the AFI.	
Figure (25): Receiver-operating characteristic (ROC) curve for	
	47
discrimination between patients with IUGR or SGA	47
using the UA RI.	
Figure(26): Receiver-operating characteristic (ROC) curve for	
	47
discrimination between patients with IUGR or SGA	47
using the MCA RI.	
Figure (27): Receiver-operating characteristic (ROC) curve for	
	40
discrimination between patients with IUGR or SGA	48
using the MC PSV	

List of tables

	Pa	age
Table (1): Sensitivity of ultras detecting IUGR	sonographic diameters for	17
Table (2): Different ultrasound estimating fetal weight	regression formulae for	25
Table (3): Characteristics of patient	ts with IUGR or SGA baby	38
Table (4): Obstetric history in pababy	atients with ILIGR or SGA	39
Table(5): Fetal biometric measure SGA babies	s in patients with IUGR or	39
Table (6): Receiver-operating c	petween patients with IUGR	42
Table (7): Receiver-operating c	characteristic (ROC) curve between patients with IUGR	46

List of abbreviations

2-D: two dimensions

2D US: two dimensions ultrasound 2SD: double standard deviation AC: abdominal circumference

AFI: amniotic fluid index **AFV:** amniotic fluid volume

ATD: abdominal transverse diameter **AUC:** area under the ROC curve

BMI: body mass index **BPD:** biparietal diameter

BW: birth weight

CI: confidence interval **CS:** cesarean section

DBP: diastolic blood pressure

DM: diabetes mellitus

EFBW: estimated fetal body weight **EFW:** estimation of fetal weight

FBW: fetal birth weight

FL: femur length

FL/AC: femur length /abdominal circumference **FL/MTC:** femur length / mid thigh circumference

FL/TC: femur length /thigh circumference

FW: fetal weight

HC: head circumference

HC/AC: head /abdominal circumference

g: grams

GA: gestational age

GHV: growth hormone variant

gm: grams

IGA: individualized growth assessment

IGF-I: insulin growth factor 1 **IUFD:** intrauterine fetal death

IUGR: intrauterine growth restriction

LBW: low birth weight LMP: last menstrual period MCA: middle cerebral artery

MCA PSV: middle cerebral artery peak systolic velocity

MCA RI: middle cerebral artery resistance index

MTC: mid thigh circumference **NPV:** negative predictive value

PG: primigravida

PGH: placental growth hormone

PI: ponderal index **PI:** pulsatility index

PPV: positive predictive value

ROC curve: receiver operating characteristic curve

SBP: systolic blood pressure

SCT/FL: subcutaneous tissue width / femur length

SE: standard error

SGA: small for gestational age

TC: thigh circumference UA: umbilical artery

UA RI: umbilical artery resistance index

Evaluation of role of femur length / mid thigh circumference ratio in differentiation between small for gestational age but healthy fetuses and intrauterine growth restricted fetuses

Protocol of Thesis

Submitted to the Faculty of Medicine, Ain Shams University

In Partial Fulfillment for the Degree of MASTER OF OBSTETRICS AND GYNECOLOGY

By

Enas Mohammed Abdel-Shafi Mohammed
MBBCh. Zagazig University, 2009
Resident
Department of Obstetrics and Gynecology
Al Qenayat Hospital

Under supervision of

Prof. Ahmed Mohamed Ibrahim

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Alaa Sayed Hassanin

Lecturer in Obstetrics and Gynecology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2015

INTRODUCTION

Small for gestational age (SGA) infants are often designated as suffering from intrauterine growth restriction (IUGR). It is estimated that from 3 to 10 percent of infants are growth restricted (*Leveno et al.*, 2013).

Small for gestational age infants are generally considered to be those whose weight are below 10th percentile for their gestational age. Not all infants with birth weights less than 10th percentile, however, are pathologically growth restricted; some are small simply because of constitutional factors. Indeed, 25 to 60 percent of infants conventionally diagnosed to be SGA are in fact, appropriately grown when determinants of birth weight such as maternal ethnic group, parity, weight, and height are considered (*Leveno et al.*, 2013).

A definition of SGA that is based upon birth weight below 5th percentile has also been proposed. Normal fetal grow standards are sometimes based on mean values with normal limits defined by ±2 standard deviations. This definition would limit SGA infants to 3 percent of births instead of 10 percent. In fact, most poor outcomes are in those infant with birth weights below the 3rd percentile. Most recently, individual fetal growth potential has been proposed in place of a population – based cutoff. In this model, a fetus that is less than its individual optimal size at a given gestational age would be considered growth restricted (*Leveno et al.*, 2013).

In a study made about outcome of fetuses with diagnosis of isolated short femur in the second half of pregnancy, SGA, IUGR, and abnormal umbilical artery Doppler (AUD) were more frequent in the fetuses with short femur. According to receiver-operating characteristic ROC analysis, femur length (FL) measurement behaved as a good diagnostic test for SGA and IUGR (Morales-Roselló and Llorens, 2012).

In another study made to assess the association between isolated short fetal femur and intrauterine growth restriction, it was found that an isolated short femur is associated with intrauterine growth restriction and adverse pregnancy outcome, but in non-isolated cases was found to be associated with chromosomal disorders, skeletal abnormalities and multiple abnormalities (*Vermeer and Bekker*, 2013).

In a study about using anterior-posterior thigh diameter (APTD) measured by two-dimensional sonography as an indicator of fetal age at 18 to 28 weeks gestation, significant correlation was found between (APTD) and fetal age from simple line regression analysis, with >99.9% confidence intervals at each week from 18 to 28 weeks gestation. There was a correlation of 1 mm APTD per 1 week of fetal age, which indicates that APTD is a reliable and valid method for assessing fetal age in a normal pregnancy and may be particularly useful when other parameters are unable accurately to predict fetal age. An accurate linear measurement of multiple fetal parameters allows a more complete profile of fetal growth and estimated date of delivery (EDD). APTD may also be useful in identifying fetal growth problems (*Al-Kubaisi*, 2006).

In a prospective study about prediction of fetal birth weight from measurement of fetal thigh circumference by two-dimensional ultrasound, a two-dimensional ultrasound scan was performed between 38 and 40 weeks gestation, which measured the biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL) and thigh circumference (TC) at the level of midthigh, and incorporated them to estimate fetal weight. The results of this study show that the fetal

thigh circumference, if incorporated with other standard biometric parameters in estimating fetal weight by ultrasound, improves the predictability of birth weight estimation, and can predict intra-uterine growth restriction (*Sanyal et al. 2012*).

In a study about role of fetal thigh circumference in estimation of birth weight by ultrasound, it was found that incorporating fetal thigh circumference measurements along with biparietal diameter, femur length and abdominal circumference, significantly improved the accuracy of birth weight estimations by ultrasound. There was a good correlation between ultrasound measurements and actual postnatal measurements of thigh circumference. (*Dahiya et al. 2010*)

In a study about longitudinal measurement of fetal thigh soft tissue parameters and its role in the prediction of birth weight (BW), it was found that the fetal abdominal subcutaneous tissue (FAST) and thigh muscle and fat show an increase with gestation. At 28 weeks gestation, the abdominal circumference, thigh fat, FAST, and EFW percentile were found to be significant predictors of BW. A combination of EFW percentile and thigh fat were found to be the optimal multivariate model at 28 weeks for predicting BW. At 37 weeks, BW prediction using EFW percentile, FAST, and thigh fat was the most accurate. The results revealed acceptable reproducibility for fetal thigh muscle and fat. The study provides reference ranges for thigh fat and muscle at 28 and 37 weeks gestation. The inclusion of fetal thigh fat in the algorithm improves the predictive power for birth weight. This information is important to explore the role of fetal thigh in the detection of aberrant growth. (*O'Connor et al. 2013*)

In a study about role of fetal thigh circumference (TC) in estimation of birth weight by ultrasound, it was found that the results of this study clearly indicate that fetal TC measurements add to the accuracy of birth weight estimation in obstetric practice. Measurements of TC provide a potentially straight forward method for assessing the deposition of muscle and fat in the growing fetus. This parameter is preferred over diameter measurements as it is less sensitive to changes in shape. Anatomical studies have proved that the correct plane for TC is located at the middle of the thigh. Ultrasound measurement of fetal thigh circumference is uniformly reproducible within 4% error and is comparable to other fetal parameters in variability. Formulas incorporating TC measurements may be proven most useful in predicting fetal weight when growth abnormalities are present. Fetal growth aberrations are associated with changes in the soft tissue mass which is decreased in IUGR. Pediatric experience has shown that TC is one of the parameters that reflect soft tissues mass. Recently imaging fetal limb volume by 3D ultrasound has proved that fetal thigh measurements facilitate accurate prediction of birth weight. Thus it can be inferred that TC measurements using ultrasound add to obstetrician's ability to predict intrauterine growth abnormalities. (*Hebbar and Varalakshmi*, 2007)

Aim of the study

To evaluate femur length/mid thigh circumference ratio in intrauterine growth restricted fetuses in comparison to small for gestational age but healthy fetuses.

Research question:

In pregnant women, can femur length /mid thigh circumference ratio differentiate between IUGR fetuses and SGA but healthy fetuses?

Hypothesis:

In pregnant women it is hypothesized that using femur length / mid thigh circumference ratio can differentiate between small for gestational age but healthy fetuses and intrauterine growth restricted fetuses.

Methodology

Detailed Description:

Technical design:

Study design: Observational Case-Control study.

Study site: This study will be conducted at the department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University recruiting pregnant women selected from the attendees of antenatal clinic, emergency department and from inpatient wards of Ain Shams University Maternity Hospital.

Duration: from June 2015 till May 2016.

Sample size: 89 participants.

This study will include 89 pregnant women. These cases will be divided into 2 groups:

- 1. Small for gestational age fetuses group: will include 55 pregnant females all in third trimester followed by serial ultrasound over 2weeks and show normal growth during this follow up. On first ultrasound the estimated fetal weight should be below the 10th percentile according to that of gestational age, on the second ultrasound the fetal weight will be increased by the same rate and the growth curve will be parallel to the normal growth curve, e.g., if during first ultrasound the fetal weight was at the 5th percentile of that gestational age, on the second ultrasound the fetal weight will be at the 5th percentile of the new gestational age
- 2. IUGR fetuses Group: will include 34 pregnant females all in third trimester followed by serial ultrasound for 2 weeks and showing retarded growth, and show much retarded growth during follow up. On the first ultrasound the estimated fetal weight should be below the 2SD of the mean weight of the same gestational age, and the