

Hydrometallurgical Processing of Egyptian Zinc Concentrate for Preparation of Nano Crystalline Zinc Oxide Materials for Advanced Applications

Thesis submitted

By

Ayat Nasr Mohammed Shazly

B.Sc. (Chemistry) 2007 M.Sc. (Chemistry) 2012

Under the supervision of **Prof. Dr. Mohamed Fathi El- Shahat**

Professor of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

Prof. Dr. El- Sayed Ali Abdel-Aal

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

Prof. Dr. Mohamed Mohamed Rashad

Head of Advanced Materials Department, Central Metallurgical Research and Development Institute (CMRDI).

Prof. Dr. Ibrahim Ahmed Ibrahim

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

To

Department of Chemistry, Faculty of Science, Ain Shams University For Philosophy Degree (Ph. D.) Chemistry (2017)

Approval Sheet

Name of candidate: Ayat Nasr Mohammed Shazly

Degree: Ph.D. Chemistry Degree in

Thesis Title: Hydrometallurgical Processing of Egyptian Zinc Concentrate for Preparation of Nano Crystalline Zinc Oxide Materials for Advanced Applications

This Thesis has been approved by:

1- Prof. Dr. Mohamed Fathi El- Shahat

Professor of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

2- Prof. Dr. El- Saved Ali Abdel-Aal

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

3- Prof. Dr. Mohamed Mohamed Rashad

Head of Advanced Materials Department, Central Metallurgical Research and Development Institute (CMRDI)

4- Prof. Dr. Ibrahim Ahmed Ibrahim

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

Approval

Prof. Dr. Ibrahim El-Housiny Badr Chairman of Chemistry Department

Hydrometallurgical Processing of Egyptian Zinc Concentrate for Preparation of Nano Crystalline Zinc Oxide Materials for Advanced Applications

Ayat Nasr Mohammed Shazly

B.Sc. (Applied Chemistry) 2007 M.Sc. (Inorganic Chemistry) 2012

Under the supervision of **Prof. Dr. Mohamed Fathi El- Shahat**

Professor of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

Prof. Dr. El- Sayed Ali Abdel-Aal

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

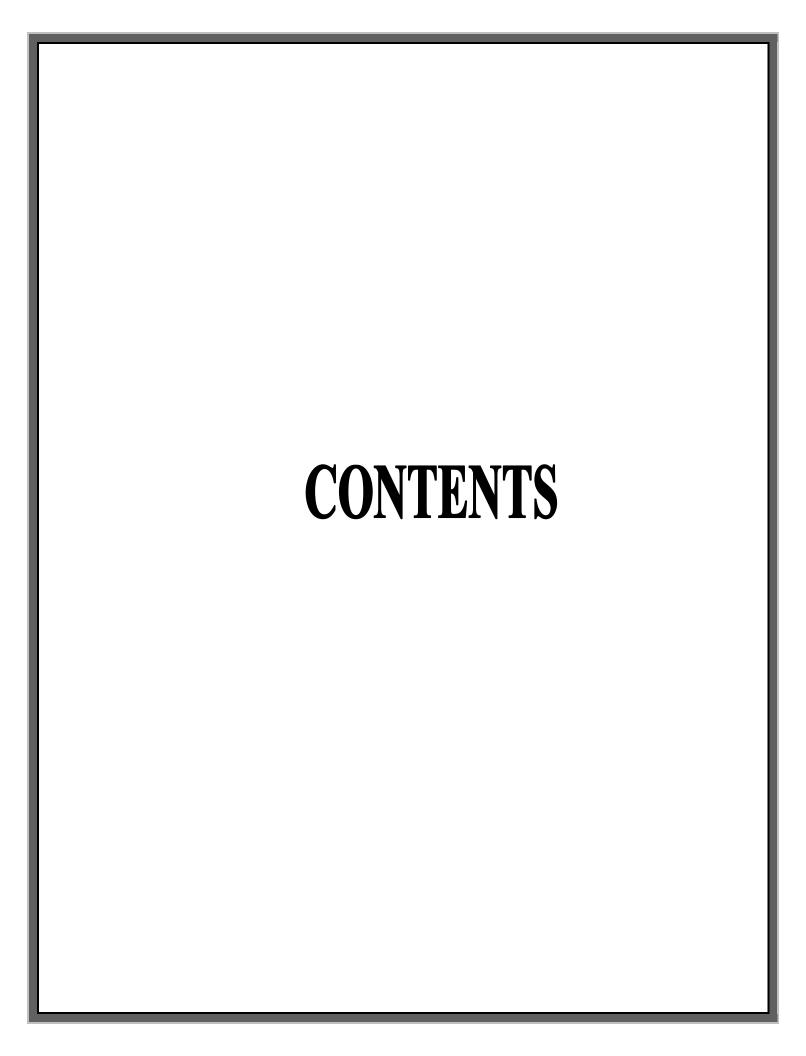
Prof. Dr. Mohamed Mohamed Rashad

Head of Advanced Materials Department, Central Metallurgical Research and Development Institute (CMRDI)

Prof. Dr. Ibrahim Ahmed Ibrahim

Professor of Chemical and Electro Metallurgy, Mineral Technology Department, Central Metallurgical Research and Development Institute (CMRDI)

Faculty of science Chemistry department


Hydrometallurgical Processing of Egyptian Zinc Concentrate for Preparation of Nano Crystalline Zinc Oxide Materials for Advanced Applications

A Thesis Submitted for Degree of Ph.D (Inorganic Chemistry)

By
Ayat Nasr Mohammed Shazly
B.Sc. (Applied Chemistry), 2007
M.Sc. (Inorganic Chemistry), 2012

Department of Chemistry
Faculty of Science
Ain Shams University

2017

CONTENTS

	Content	Page No.
	Acknowledgement	
	Abstract	
	List of Figures	vi
	List of Tables	xi
	List of Abbreviations	xii
1.1.	CHAPTER (1) Introduction	1
1.2.	Statement of the problem	4
1.3.	CHAPTER (1) Literature survey	5
1.3.1.	Non-sulfide Zinc Deposits	6
1.3.2.	Egyptian Non-Sulfide Zinc Deposits	7
1.3.3.	Zinc Sulfate Production Methods	8
1.3.3.1.	Pyrometallurgical Methods	9
1.3.3.2.	Hydrometallurgical Method	9
1.3.4.	Synthesis of ZnO	10
1.3.5.	Properties of ZnO	14
1.3.5.1.	Crystal Structure	14
1.3.5.2.	Electronic Band Structure	15
1.3.5.3.	Optical Properties	17
1.3.6.	Metal ions substituted ZnO	18

		Contents
1.3.6.1.	Cu ²⁺ substituted ZnO nanomaterials	18
1.3.6.2.	Sn ²⁺ substituted ZnO nanomaterials	19
1.3.7.	Applications of ZnO	19
1.3.7.1.	Photocatalysis	21
1.3.7.2.	Photocatalytic Water-Splitting	23
1.3.7.3.	Solar Cells	27
2	CHAPTER (2) Experimental	29
2.1.	Materials	29
2.1.1.	Pure chemicals	29
2.1.2.	Primary resources	30
2.2.	Procedures	30
2.2.1.	Hydrometallurgical treatment of Egyptian zinc concentrate	30
2.2.2.	Synthesis of zinc oxide (ZnO) nanomaterials	31
2.2.2.1.	Synthesis of ZnO nanoparticles by co- precipitation method	from 31
	Egyptian zinc concentrate and pure chemicals	
2.2.2.2.	Synthesis of ZnO nanoparticles in presence of surfactants by precipitation method	y co- 32
2.2.2.3.	Synthesis of Cu ²⁺ substituted ZnO and Sn ²⁺ substituted nanomaterials by co-precipitation method	ZnO 33
2.2.2.4.	Synthesis of ZnO micro/ nanorods by hydrothermal method	33

Synthesis of ZnO@TiO2 core shell by atomic layer deposition

33

34

2.2.2.5.

2.2.3.

(ALD) technique

Photocatalytic activity tests

		Contents
2.2.4.	Photoelectrochemical water splitting tests	34
2.2.5.	Solid state dye sensitized solar cell fabrication (ss- DSSCs)	35
2.3.	Characterization Techniques	36
2.3.1.	X-ray diffraction analysis (XRD)	36
2.3.2.	Brunauer–Emmett–Teller (BET) measurements	36
2.3.3.	Raman analysis	36
2.3.4.	Scanning electron microscope (SEM)	36
2.3.5.	Transmission electron microscope (HR-TEM)	37
2.3.6.	UV-Vis Transmittance Spectrophotometer	37
2.3.7.	Photoluminescence spectra (PL)	37
2.3.8.	Atomic layer deposition (ALD)	37
2.3.9.	Solid state dye sensitized solar cells current-voltage	37
	(I-V) characterization	
i.	Sun simulator setup	37
ii.	The incident photon to current conversion efficiency (IPCE)	37
3	CHAPTER (3) Results and discussion	40
3.1.	Synthesis of ZnO nanomaterials	40
3.1.1.	Hydrometallurgical treatment of Egyptian zinc concentrate	40
3.1.1.1.	Characterization of zinc concentrate	40
i.	Crystal structure	41
ii.	Chemical analysis and particle size distribution	41
3.1.1.2.	Chemical processing of zinc concentrate	42

C	Λ	n	1	Δ.	n	tc
١,	,	11	ı.	C	H	17

i.	Leaching of zinc concentrate	42
ii.	Filtration	43
iii.	Quality of product and residue	45
3.1.2.	Co-precipitation of ZnO nanoparticles from Egyptian zinc concentrate	46
i.	Crystal structure	46
ii.	Microstructure	47
iii.	Optical properties	48
iv.	Specific surface area S_{BET}	49
3.1.3.	Co-precipitation of ZnO nanoparticles in presence of surfactants	50
i.	Crystal structure	50
ii.	Microstructure	51
iii.	Optical properties	53
3.1.4.	Cu ²⁺ or Sn ²⁺ substituted ZnO	57
3.1.4.1.	Cu ²⁺ ion substituted ZnO	57
i.	Crystal structure	57
ii.	Microstructure	58
iii.	Optical properties	59
iv.	Specific surface area S_{BET}	60
3.1.4.2.	Sn ²⁺ ion substituted ZnO	60
i.	Crystal structure	61
ii.	Microstructure	62
iii.	Optical properties	63

C	Λ	n	1	Δ.	n	tc
١,	,	11	ı.	C	H	17

	Arabic summary	
	Appendix	131
	References	104
	Summary and conclusions	98
ii.	Sn ²⁺ ion substituted ZnO	95
i.	ZnO nanoparticles from Egyptian zinc concentrate (ZnO _o)	92
3.2.3.	Application of the synthesized ZnO nanomaterials in solid state dye sensitized solar cells	92
3.2.2.	Application of ZnO micro/nanorods and ZnO@ TiO_2 heterojunction in the photoelectrochemical water splitting	81
iii.	Sn ²⁺ ion substituted ZnO	77
ii.	Cu ²⁺ ion substituted ZnO	76
i.	ZnO nanoparticles from Egyptian zinc concentrate (ZnO _e)	72
3.2.1.	Photocatalytic degradation of methylene blue dye	72
3.2.	Application of the produced ZnO nanomaterials	72
3.1.6.3.	Optical properties	71
3.1.6.2.	Microstructure	70
3.1.6.1.	Crystal structure	68
3.1.6.	Fabrication of ZnO@TiO2 heterojunction by ALD technique	68
3.1.5.3.	Optical properties	67
3.1.5.2.	Microstructure	66
3.1.5.1.	Crystal structure	65
3.1.5.	Hydrothermal synthesis of ZnO micro/nanorods	65
iv.	Specific surface area S _{BET}	64