

Ain Shams University
Faculty of Pharmacy
Microbiology & Immunology Dept.

"A Study on the Bacterial Production of Phospholipases C with Potential Industrial Application"

A Thesis

Submitted in Partial Fulfillment of the Requirments for the

Doctor of Philosophy Degree

In
Pharmaceutical Sciences
(Microbiology and Immunology)

Ву

Nooran Mohamed Sherif Elleboudy

Master's of Pharmaceutical Sciences (Microbiology and Immunology), Faculty of Pharmacy, Ain Shams University, 2009.

Ain Shams University
Faculty of Pharmacy
Microbiology & Immunology Dept.

"A Study on the Bacterial Production of Phospholipases C with Potential Industrial Application"

A Thesis

Submitted in Partial Fulfillment of the Requirments for the

Philosophy Doctorate Degree

In

Pharmaceutical Sciences

(Microbiology and Immunology)

Ву

Nooran Mohamed Sherif Elleboudy

Master's of Pharmaceutical Sciences (Microbiology and Immunology), Faculty of Pharmacy, Ain Shams University, 2009

Under Supervision of

Prof. Dr. Nadia A. El-Haleem Hassouna

Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Mohammad Mabrouk Aboulwafa

Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Walid Faisal El-Khatib

Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

2016

Acknowledgements

يا ربى لك الحمد كما ينبغى لجلال وجهك ولعظيم سلطانك سبحانك لا نحصى ثناءً عليك وأنت كما أثنيت على نفسك

I would like to express my deep gratitude to **Prof. Dr. Nadia Abd El-Haleem Hassouna**, Professor of Microbiology and Immunology, and founder of the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for her attentive supervision and caring guidance throughout the whole work. If it weren't for her unwavering assistance and relentless backing, it would not have been possible to realize this work. Her efforts in providing our microbiology laboratories with all the possible facilities would never be forgotten.

My gratitude is also expressed to **Prof. Dr. Mohammad Mabrouk Aboulwafa,** Professor and Head of Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for suggesting this research point, planning the work, following up and giving his valuable time and effort, and for his constructive criticism and valuable advice throughout this study. The extensive effort by Prof. Dr. Mohammad in revising this manuscript is highly appreciated.

Thankfulness is also due to **Prof. Dr. Walid Faisal Elkatib,** Professor of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University,

for his supportive supervision, attentive follow-up, continuous motivation, and unlimited assistance throughout the whole work.

Special thanks go to Assoc. Prof. Dr. Rania Hathout, Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for providing me with the software needed for the response surface methodology experiments and giving me the essential advice for operating it.

Grateful thanks are extended to my dear colleagues and to all the workers at the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University.

Last but not least, I would like to express my deepest and most sincere gratitude to my parents, my husband, my mother-in-law, and my daughters for their patience, understanding, tolerance, sacrifice, motivation, backing and everlasting support.

Nooran Sherif Elleboudy

List of Abbreviations

Abbreviation	Definition
ANOVA	Analysis of Variance
APS	Ammonium Persulfate
В.	Bacillus
BBD	Box-Behnken Design
BSA	Bovine Serum Albumin
Bt	Bacillus thuringiensis
CAGR	Compound Annual Growth Rate
СВВ	Coomassie Brilliant Blue
CCD	Central Composite Design
CMC	Critical Micelle Concentration
CSL	Corn Steep Liquor
CV	Coefficient of Variation
DAG	Diacyl Glycerol
DCW	Dry Cell Weight
DF	Degrees of Freedom
DO	Dissolved Oxygen
DPA	Diphenylamine
Exp.	Experiment
FA	Fatty acid
GRAS	Generally Regarded As Safe
IcP	Inositol cyclic Phosphate
MAG	Monoacyl Glycerol
MS	Mean of Squares
NHP	Non Hydratable Phospholipid
NOAEL	No Observed Adverse Effect Level
NPPC	p-Nitrophenylphosphorylcholine
OFAT	One-Factor-at-a-Time
Орр	Oligopeptide Permease
PA	Phosphatidic Acid
PAGE	PolyAcrylaminde Gel Electrophoresis
PapR	PLC Associated Protein Regulator
PC	Phosphatidylcholine
PCA	Perchloric acid
PC-PLC	Phosphatidylcholine-Preferring Phospholipase C

Abbreviation	Definition
PE	Phosphatidylethanolamine
PG	Phosphatidylglycerol
Pi	Inorganic Phosphate
PI	Phosphatidylinositol
PI-PLC	Phosphatidylinositol-Specific Phospholipase C
PLC	Phospholipase C
PlcR	Phospholipase C Regulator
ppm	Parts per million
PS	Phosphatidylserine
R ²	Coefficient of determination
RPM	Revolution Per Minute
RSM	Response Surface Methodology
SAR	Structure Activity Relationships
SBM	Soy Bean Meal
SDS	Sodium Dodecyl Sulfate
SM	Sphingomyelin
SmF	Submerged Fermentation
Sqrt	Square root
SS	Sum of Squares
SSF	Solid State Fermentation
TEMED	Tetramethylethylenediamine
ТРВМ	Tris Peptone Beef extract Malt extract
V	Volt
vvm	volume of air per volume of liquid per minute
WB	Wheat bran

Contents

Ti	tle	Page
ΑI	BSTRACT	1
IN	ITRODUCTION	5
LI'	TERATURE REVIEW	7
1.	Enzymes in Industry	7
	1.1. Enzymes as Part of White Biotechnology	7
	1.2. Global Market	8
	1.3. Applications	11
	1.4. Advantages and Drawbacks	12
	1.5. Enzymes with Special Characteristics	13
_	1.6. Sources	14
2.	The Genus Bacillus	
	2.1. Morphology and Ecology	15
	2.2. Systematics	15
	2.3. Genomic Analysis	19
	2.4. Pathogenicity	21
2	2.5. Biotechnological Importance	22
э.	Phospholipases: Classification and Role in Biocatalysis	24
	3.2. Phospholipases in Biocatalysis	28
1	Phospholipases C	
ᅻ.	4.1. Physiological Function	30
	4.2. Substrate Specificity	31
	4.3. Classification	33
	4.4. Assay Methods	34
	4.5. Production	39
	4.5.1. Microbial Sources	39
	4.5.2. Production in Submerged Fermentation	40
	4.5.3. Production in Solid State Fermentation	41
	4.5.4. Scale-up of Production	42
	4.6. Purification	43
	4.7. Bacillus Phospholipases C	45
	4.7.1. Structure	45
	4.7.2. Substrate Structure-Activity Relationships	46
	4.7.3. The Catalytic Mechanism	48
	4.7.4. Genetics and Biosynthesis	52

Title		Page
4.7.5. Applications		56
4.7.5.1. Research Applica	tions	56
4.7.5.1.1. Membrane F		56
4.7.5.1.2. Models for E	ukaryotic Phospholipases C	56
4.7.5.2. Industrial Applica	itions	57
4.7.5.2.1. Acting a	is Emulsifiers	57
4.7.5.2.1.1. Bak		57
4.7.5.2.1.2. Che	eese Making	59
4.7.5.2.1.3. Egg	y Yolk Based Industries	59
4.7.5.2.2. Vegetab	ole Oil Degumming	60
4.7.5.2.2.1. Veg	getable Oil Phospholipids	61
4.7.5.2.2.2. Pho	ospholipases in Edible Oil Degumming	62
4.7.5.2.2.3. PLC	Cs versus PLAs for Degumming of Oils	63
4.7.5.2.2.4. Bio	diesel Production	65
4.7.5.2.3. Transes	trification	68
4.7.5.2.4. Ceramio	de Production	69
4.7.6. Safety Considerations for Dietary Exposure to PLC		71
4.7.6.1. Use Levels ar	4.7.6.1. Use Levels and Residual Levels	
4.7.6.2. Assessment of	of Dietary Exposure	71
4.7.6.3. Allergenicity		72
4.7.6.4. Toxigenicity		72
4.7.6.5. Evaluation		72
MATERIALS AND METHODS		73
1. Microorganisms		73
2. Blood		73
3. Chemicals		73
4. Media		77
4.1. Ready-Made Media and N	Medium components	77
4.2. Solid State Fermentation	Substrates	77
4.3. Blood Agar		78
4.4. Egg Yolk Nutrient Agar		78
4.5. Luria Bertani: Glycerol (50	0:50) Medium	78
4.6. Luria Bertani (LB) Broth		79
4.7.Skim Milk Medium (10% w	•	79
•	inimal Medium (Phosphate starved-TM	•
supplemented with 0	0.5% BSA	79
4.9.Tris-Peptone Medium		80
4.10.Phosphate starved-Pepto	one-Beef Extract-Malt Extract Medium	80

Title	Page
5. Buffers, Solutions and Reagents	80
5.1.Tris-HCl Buffer (0.2 M, pH 7.8)	 80
5.2.Tris-HCl Buffer (10mM, pH 6-9)	81
5.3. Citrate Buffer (10 mM)	81
5.4. Bicarbonate Buffer	81
5.5. Perchloric Acid (1 N)	82
5.6. Phospholipid Substrate Solution	82
5.7. Diphenylamine (DPA) Reagent Mixture	83
5.8. p-Nitrophenylphosphorylcholine (NPPC) Reagent	83
5.9. Protein Assay Reagents and Standard Solutions	83
5.10. Reagents for Sodium Dodecyl Sulfate Polyacrylamide Gel	
Electrophoresis (SDS-PAGE)	84
6. Recovery of Bacillus isolates from soil samples	88
6.1. Collection of soil samples	88
6.2. Isolation of <i>Bacillus</i> isolates	88
7. Enzyme Assays	89
7.1. Egg-Yolk Plate Method	89
7.2. Chromogenic Assay of PLC Using NPPC as a Substrate	90
7.3.Turbidimetric Assay of PLC Activity	93
8. Screening Bacillus Isolates for PLC Production	
8.1. Primary Screening	94
8.2. Secondary Screening	94
9. Preservation of Isolates	
9.1.Glycerol Stocks	99
9.2.Lyophilization	99
10. Identification of the Selected Isolates with Highest PLC Productiviti	
10.1.Sequencing of 16S rRNA Genes	101
10.2.Biochemical Tests	101
11. Purification of PLCs Produced from the Selected Isolates with High	
Productivities	
11.1. Enzyme Production	102
11.2. Enzyme Purification	103
11.3. Lowry Method for Determination of Protein Concentration11.4. Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis (S	104
, , , , , , , , , , , , , , , , , , , ,	
PAGE) for the Purified PLC Preparations 12. Enzyme Characterization	106
12.1. Thermotolerance	107
12.2. pH Tolerance	107
12.3. Enzyme Activity at Different pH Values	107

Title			Daga
Title			Page
12.4. Enzyn	าe Activ	ity at Different Temperatures	108
12.5.Activit	y at Ded	creasing Water Tension Values	108
12.6. Subst	rate Spe	ecificity	109
13. Improv	vement	of PLC Productivity of a Selected Isolate in Subm	erged
Fermentation	and So	olid State Fermentation	. 110
13.1.Impro	vement	of PLC Productivity of the Selected Isolate in Shak	e Flask
in	Submer	ged Fermentation (SmF)	111
13.1.1. S	tudying	the effect of Process Parameters	111
13	.1.1.1. F	Preliminary Studies on the Effect of Process Param	eters
			111
	13.1.1.	1.1.Time Course of Cell Growth and PLC Production	n 112
	13.1.1.	1.2. Effect of Initial pH of Fermentation Medium	112
	13.1.1.	1.3. Effect of Incubation Temperature	112
	13.1.1.	1.4. Effect of Inoculum Size	113
	13.1.1.	1.5. Effect of Aeration Level	113
13	.1.1.2. F	RSM Experimental Design for the Optimization of I	rocess
Pa	ramete	rs for PLC Production by the Selected Isolate	113
13.1.2. S	tudying	the Effect of Medium Components	119
13	.1.2.1. F	Preliminary Studies on the Effect of Medium Comp	onents
			119
		1.1. Effect of Some Nitrogen Sources	120
	13.1.2.	1.2. Effect of Concentration of Some Selected Nitr	ogen
So	urces		120
	13.1.2.	1.3. Effect of Some Carbohydrate Sources	
			120
		 1.4. Effect of Concentration of a Selected Carbohy 	
So	urce		121
		1.5. Effect of Potassium Dihydrogen Phosphate an	
Co	ncentra		121
		1.6. Effect of Some Metal Salts	122
		1.7. Effect of Some Surface Active Agents	122
		RSM Experimental Design for Optimization of Med	ium
	•	nts for PLC Production	122
		t of PLC Productivity of the Selected Isolate in Soli	
		tion (SSF)	127
	.2.1.	Enzyme Production in SSF	127
	.2.2.	Enzyme Extraction	127
13	.2.3.	Determination of Biomass	127
13	.2.4.	Enzyme Assay	128

Title		Р	age
13.2.5.1	. PLC Product	Studying the Effect of Some Physical and Nutrier LC Production by the Selected Isolate in SSF ion in Different SSF Substrates	nt 130 130
		Studying the Effect of Some Parameters on the of PLC in SSF using Wheat Bran as a Substrate	131
	riouuction 0	13.2.5.2.1. Effect of Level of Moisturizing Solutio	
		13.2.5.2.2. Effect of Inoculum Size	131
		13.2.5.2.3. Effect of Incubation Temperature	131
		13.2.5.2.4. Effect of Initial pH of the Moisturizing	3
	Solution	·	132
		13.2.5.2.5. Effect of Composition of Moisturizing	;
	Solution		132
		13.2.5.2.6. Effect of Some Supplementary Carbo	
	Sources		132
	Carrage	13.2.5.2.7. Effect of Some Supplementary Nitro	
	Sources	DCM Evnorimental Design for Ontimication of Bu	132
	13.2.6. Production in	RSM Experimental Design for Optimization of PL	C 133
14. PLC		by the Selected Isolate, B100, in a Laboratory	133
Fermentor		1	.37
	rmentation P		137
	eparation of I		138
	-	with and without External pH Control	139
14.4. PL	C Production	at an Aeration Level of 2 vvm and an Agitation Ra	te of
	200 RPM		139
RESULTS			140
	y of Isolates	from Different Soil Samples 1	40
	-	e Collected Bacillus Isolates for PLC Production 1	L40
3. Seconda	ry Screening	the Very Strong PLC-Producing Bacillus Isolates:	143
4. Identific	ation of the I	Five Selected Bacterial Isolates that Showed Higl	nest
PLC Produc		1	
•	•	S rRNA Genes 1	
	chemical Test		146
		roduced by the <i>B. thuringiensis</i> Selected Isolate	
		C from the Culture Supernatants	148
5.2. SDS	-PAGE Characteriza	tion 1	148 56

Title	Page
7. Improvement of PLC Productivity of <i>B. thuringiensis</i> B100 in Subme Fermentation and Solid State Fermentation using One-Factor-at-a-Tin Method and Response Surface Methodology Experimental Design	ne
Title	Page
7.1.Improvement of PLC Productivity of <i>B. thuringiensis</i> B100 in Shake F	lasks by
Submerged Fermentation (SmF)	166
7.1.1. Studying the Effect of Process Parameters	166
7.1.1.1. One-Factor-at-a-Time (OFAT) Method	166
7.1.1.1. Time Course of Cell Growth and PLC Production	167
7.1.1.1.2. Effect of Initial pH of Fermentation Medium	169
7.1.1.3. Effect of Incubation Temperature	169
7.1.1.4. Effect of Inoculum Size	172
7.1.1.5. Effect of Aeration Level	172
7.1.1.2. RSM Experimental Design	175
7.1.2. Studying the Effect of Medium Components	192
7.1.2.1. One-Factor-at-a-Time Study	192
7.1.2.1.1. Effect of Some Nitrogen Sources	192
7.1.2.1.2. Effect of Different Concentrations of Peptone o	
Extract	195
7.1.2.1.3. Effect of Some Carbohydrate Sources	198
7.1.2.1.4. Effect of Concentration of Malt Extract	198
7.1.2.1.5. Effect of Potassium Dihydrogen Phosphate and	its
Concentration	203
7.1.2.1.6. Effect of Some Metal Salts	203
7.1.2.1.7. Effect of Some Surface Active Agents	206
7.1.2.2.RSM Experimental Design for Optimization of Medium	
Components for PLC Production	208
7.2. Improvement PLC Productivity of <i>B. thuringiensis</i> B100 in Solid St	tate
Fermentation (SSF)	222
7.2.1. One-Factor-at-a-Time Method	222
7.2.1.1. PLC Production in Different SSF Substrates	222
7.2.1.2. Studying the Effect of Some Parameters on the Prod	uction
of PLC in SSF using Wheat Bran as a Substrate	224
7.2.1.2.1. Effect of Level of Moisturizing Solution	224
7.2.1.2.2. Effect of Inoculum Size	224
7.2.1.2.3. Effect of Incubation Temperature	224
7.2.1.2.4. Effect of Initial pH of Moisturizing Solution	228
7.2.1.2.5. Effect of Composition of Moisturizing Solution	228

Title		Page
7.2.2	7.2.1.2.6. Effect of Some Supplementary Carbon Sources 7.2.1.2.7. Effect of Some Supplementary Nitrogen Sources . RSM Experimental Design for the Optimization of PLC Produ	
	SSF	234
8. PLC Pro	duction by the Selected Isolate, <i>B. thuringiensis</i> B100, in a	
Laboratory	Fermentor	. 243
8.1. PLC	Production with and without External pH Control	243
8.1.1	. PLC Production without External pH Control	243
8.1.2	. PLC Production with External pH Control at 7.6	243
8.2. PLC	Production at an Aeration Level of 2 vvm and an Agitation Ra	ate of
	200 RPM with pH Controlled at 7.6	246
DISCUSSIO	N	248
1. Isolatio	n, Screening and Identification of Bacillus Isolates with	
Comparati	vely High PLC Productivities	249
2. Purifica	tion and Characterization of PLCs Produced from the Selecte	ed
Isolates wi	th Highest PLC Productivity	255
3. Improve	ement of PLC Productivity of <i>B. thuringiensis</i> B100 in Subme	rged
Fermentat	ion and Solid State Fermentation using Response Surface	
Methodolo	ogy Experimental Design	263
3.1. lmp	rovement of PLC Productivity of B. thuringiensis B100 in Shal	ke Flasks
	in Submerged Fermentation (SmF)	265
3.1.1	. Studying the Effect of Process Parameters	265
3.1.2	. Studying the Effect of Medium Components	274
3.2. Imp	provement of PLC Productivity of <i>B. thuringiensis</i> B100 in Solid	d State
	Fermentation	282
4. PLC Pro	duction by <i>B. thuringiensis</i> B100 in a Laboratory Fermentor.	293
SUMMARY	•	298
REFERENC	ES	302
APPENDIX		363
باللغة العربية	الملخص	1

List of Figures

rigure
Figure 1. Global revenue of industrial enzyme market, 2009-2016 10
Figure 2. Sites of action of phospholipases within the glycerophopholipid backbone
Figure 3 . Sites of action of lysophospholipase and lysophospholipase transacylase
Figure 4. Structures of the principal glycerophospholipids 32
Figure 5. Chromogenic substrates for the assay of PLC
Figure 6. Necessary elements of the <i>Bacillus</i> PLC mechanism 50
Figure 7. Catalytic cycle for <i>Bacillus</i> PLC
Figure 8. Schematic representation of the transcriptional regulator PlcR and its cognate cell-cell signalling peptide PapR
Figure 9. Effect of phospholipids on biodiesel separation 67
Figure 10. The structures of ceramide (A) and sphingomyelin (B) 70
Figure 11. Phospholipase activity measurement (Pz)
Figure 12 . Calibration curve for standard plc assayed by chromogenic assay using NPPC as a substrate
Figure 13. Calibration curve of optical density versus bacterial count of the selected <i>Bacillus</i> Isolate determined using the viable count technique 95
Figure 14. Calibration curve of optical density versus dry cell weight of the selected <i>Bacillus</i> Isolate (B100)
Figure 15. Standard curve for bovine serum albumin as determined by Lowry's method

Figure Page
Figure 16. Calibration curve of dry cell weight versus nucleic acid content for the selected isolate as determined by diphenylamine colorimeric method (Zhao <i>et al.</i> , 2013)
Figure 17. Photo of an egg yolk agar plate showing PLC production by 5 different <i>Bacillus</i> isolates
Figure 18 . Gel-filtration of PLC from <i>B. thuringiensis</i> B4. Elution was done with 10 mM tris buffer (pH7.2) at a flow rate of 0.5 ml/min and fraction volume of 4 ml
Figure 19. Gel-filtration of PLC from <i>B. thuringiensis</i> B70. Elution was done with 10 mM tris buffer (pH7.2) at a flow rate of 0.5 ml/min and fraction volume of 4 ml
Figure 20. Gel-filtration of PLC from <i>B. thuringiensis</i> B100. Elution was done with 10 mM tris buffer (pH7.2) at a flow rate of 0.5 ml/min and fraction volume of 4 ml
Figure 21. Gel-filtration of PLC from <i>B. thuringiensis</i> B11c. Elution was done with 10 mM tris buffer (pH7.2) at a flow rate of 0.5 ml/min and fraction volume of 4 ml
Figure 22 . Gel-filtration of PLC from <i>B. thuringiensis</i> B58c. Elution was done with 10 mM tris buffer (pH7.2) at a flow rate of 0.5 ml/min and fraction volume of 4 ml
Figure 23. SDS-PAGE for gel filtration activity peak of PLC for the test isolate B100 (Lane 1) and the protein molecular weight marker. 155
Figure 24. Effect of temperature on the stability of purified PLC preparations from <i>Bacillus thuringiensis</i> B4, B70, B100, B11c, and B58c, when treated at the specified temperatures for 15 min (a), 30 min (b) and 60 min (c) 157
Figure 25 . Effect of pH on the stability of purified PLC from <i>B. thuringiensis</i> B4, B70, B100, B11c, and B58c when treated at the specified pH for 30 min (a), and 60 min (b)
Figure 26. Effect of temperature on activity of PLC from <i>Bacillus thuringiensis</i> B4, B70, B100, B11c, and B58c