

EFFECT OF NITROGEN CONTENT IN ARGON SHIELDING AND BACKING GASES ON PROPERTIES OF SIMILAR AND DISSIMILAR WELD OF S31050 AND S32906 UREA GRADE STAINLESS STEEL

By

Ali Ahmed Ali Elashery

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
METALLURGICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

EFFECT OF NITROGEN CONTENT IN ARGON SHIELDING AND BACKING GASES ON PROPERTIES OF SIMILAR AND DISSIMILAR WELD OF S31050 AND S32906 UREA GRADE STAINLESS STEEL

 $\mathbf{B}\mathbf{y}$

Ali Ahmed Ali Elashery

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
METALLURGICAL ENGINEERING

Under the Supervision of

Prof. Dr. Mohamed R. El Koussy

Prof. Dr. Nahed A .Abdel-Raheem

Professor of Metallurgy
Mining, Petroleum and Metallurgical
Department Faculty of Engineering, Cairo
University

Professor of Metallurgy
Mining, Petroleum and Metallurgical
Department Faculty of Engineering, Cairo
University

Dr. Maiada Sayed Mahmoud

Mining, Petroleum and Metallurgical Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

EFFECT OF NITROGEN CONTENT IN ARGON SHIELDING AND BACKING GASES ON PROPERTIES OF SIMILAR AND DISSIMILAR WELD OF S31050 AND S32906 UREA GRADE STAINLESS STEEL

 $\mathbf{B}\mathbf{y}$

Ali Ahmed Ali Elashery

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
METALLURGICAL ENGINEERING

Approved by the Examining Committee:

- **Prof. Dr. Mohamed R. El Koussy** Thesis Main Advisor
- Faculty of Engineering- Cairo University
- **Prof. Dr. Nahed A. Abdel- Raheem** Thesis Advisor
- Faculty of Engineering- Cairo University
- **Prof. Dr. Ahmed M. El Sheikh Internal Examiner** Faculty of Engineering-Cairo University
- **Prof. Dr. Samir Abdel-Hakim External Examiner** Faculty of Engineering-Suez Canal University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

Engineer's Name: Ali Ahmed Ali Elashery

Date of Birth: 24/11/1990

Nationality: Egyptian

E-mail: alielasheri@cu.edu.eg

Phone: 0201090161132

Address: 2 Ibrahim radwan st,el mesala, El matariya, Cairo, Egypt.

Registration Date: 1/03/2014

Awarding Date: 2016

Degree: Master of Science

Department: Metallurgical Engineering

Supervisors:

Prof. Dr. Mohamed Raafat El Koussy – Faculty of Engineering – Cairo University

Prof. Dr. Nahed A. Abd-El Raheem – Faculty of Engineering – Cairo University

Dr. Maiada Sayed Mahmoud – Faculty of Engineering – Cairo University

Examiners: -

Prof. Dr. Mohamed Raafat El Koussy – Thesis main advisor

Prof. Dr. Nahed A. Abd-El Raheem- Thesis advisor

Prof. Dr. Ahmed M. El Sheikh- Internal Examiner - Faculty of Engineering- Cairo University

Prof. Dr. Samir Abdel-Hakim- External Examiner - Faculty of Engineering-Suez Canal

University

Title of Thesis: EFFECT OF NITROGEN CONTENT IN SHIELDING GASE ON PROPERTIES OF WELDMENTS OF S31050 AND S32906 STAINLESS STEEL

Key Words

Super duplex; nitrogen; shielding gas; urea; fully austenitic

Summary: This research aimed at investigating the effect of shielding and backing gases composition by supplementing nitrogen compared to usage of pure argon on: (i) microstructure of similar and dissimilar stainless steel root weld and phase balance within the weld regions; (ii) mechanical properties of the root weld zone in terms of amount of impact toughness and Vicker's hardness; (iii) ferrite Content measurement; (iv) susceptibility to crevice corrosion in terms of mass losses. It was found that adding nitrogen to argon in the composition of the shielding/backing gases in welding the root passes by gas tungsten arc welding process significantly increase the heat input and weld nitrogen content for both S32906 and S31050. It is also found that adding nitrogen improves the weld mechanical characteristics, phase balancing and noticeably enhances the corrosion resistance of the dissimilar weldment. An increase in the nitrogen content significantly decreases the degree of chromium partitioning but has a lesser effect on nickel and molybdenum. Furthermore, based on the desirable limits of ferrite content, the recommended addition of nitrogen to argon shielding gas is 10% maximum for similar S32906 joints and 2 % for dissimilar S31050/S32906 joint.

ACKNOWLEDGEMENTS

First and foremost, I have to thank my research supervisors, Prof. Dr. Mohamed R. El Koussy, Prof. Dr. Nahed A. Abdel Raheem and Dr. Maiada Sayed Mahmoud. Without their assistance and dedicated involvement in every step throughout the process, this thesis would have never been completed. I believe that I am lucky to be under supervision of this great committee.

My gratitude to my main supervisor, Prof. Dr. Mohamed R. El Koussy, whose teaching style and wide knowledge for different topics made a strong impression on me and I have always carried positive memories of his classes with me. He raised many interesting points in our discussion of early versions of this work and I hope that I have managed to address several of them here. Working with Prof. Dr. Mohamed R. El Koussy was an extraordinary experience.

I would like to express my sincere gratitude to my supervisor Prof. Dr. Nahed A. Abdel Raheem for the continuous support of my master study, for her patience, motivation, and immense knowledge. Her guidance helped me in writing of this thesis.

Special thanks to the following individuals who have provided me with technical guidance, support and material; Prof. Dr. Iman El-Mahallawi (Head of Mining, Petroleum and Metallurgy department and Mechanical Testing Laboratory manager), Eng. Mohamed Attalla (Corporate QA/QC Manager at Orascom Construction Industries).

I would like also to gratefully thank all the team in the Mechanical Testing Laboratory (Faculty of Engineering, Cairo University, Mining, Petroleum and Metallurgical Department).

I am completely indebted to my wife for her love, support, and understanding throughout my research period. I am also grateful to my father for his advice, continuous support and help throughout my life.

TO THE MEMORY OF MY MOTHER

Table of Contents

		Page
ACKNO	WLEDGMENT	I
LIST OF	TABLES	VI
LIST OF	FIGURES	VIII
ABSTRA	ACT	XIV
Chapte	r 1: Introduction	1
Chapte	r 2: Literature Review	3
2.1	Introduction to stainless steel	3
2.2	Duplex stainless steel	3
2.2.1	Classification of duplex stainless steel grades	6
2.2.2	Characteristics and Applications	7
2.2.3	Physical metallurgy of duplex stainless steel	9
2.2.3.1	Phase balance	9
2.2.3.2	Effect of alloying elements	10
2.2.4	Welding Metallurgy	11
2.2.4.1	Solidification behavior	11
2.2.4.2	Role of nitrogen content	12
2.2.4.3	Precipitation of intermetallic phases	15
2.2.4.4	Secondary austenite	16
2.2.5	Corrosion resistance of duplex stainless steel	17
2.2.5.1	Stress corrosion cracking	17
2.2.5.2	Pitting and crevice corrosion	18
2.2.5.3	Effect of nitrogen on corrosion resistance	19
2.3	Super Duplex stainless steel	22
2.3.1	Characteristics and Applications of S32906 SDSS	22
2.3.2	Mechanical properties	23
2.3.3	Welding Metallurgy	23
2.3.4	Effect of nitrogen content on SDSS	24
2.4	Austenitic stainless steel	25
2.4.1	Characteristics and Applications of S31050 ASS	25
2.4.2	Welding metallurgy.	26
2.4.2.1	Microstructure evolution during welding.	27

2.4.2.2	Effect of nitrogen addition	29
2.5	Dissimilar Welding of stainless steel	33
2.5.1	Introduction to Dissimilar Welding	32
2.5.2	Dissimilar weld of austenitic stainless steel with super duplex stainless steel	34
2.6	Some Welding Methods Used in Stainless Steel	35
2.6.1	SMAW (shielding metal arc welding)	35
2.6.2	GTAW (Gas Tungsten Arc Welding)	37
2.6.2.1	Shielding gases	37
Chapter	3: Materials and Experimental Work	40
3.1	Materials	40
3.2	Welding Technique	41
3.2.1	Gas Tungsten Arc Welding (GTAW)	42
3.2.2	Shielded Metal Arc Welding (SMAW)	43
3.2.3	Bead-On-Plate (B.O.P) welding	45
3.3	Weld Metal Characterization	47
3.3.1	Chemical analysis	47
3.3.2	Mechanical Tests	47
3.3.2.1	Charpy V-Notch Impact Test	47
3.3.2.2	Micro hardness test	48
3.3.2.3	Macro hardness test	49
3.3.3	Metallurgical Characterization	49
3.3.3.1	Metallographic Examination	49
3.3.3.1.1	Macrostructure Examination	50
3.3.3.1.2	Microstructure Examination	50
3.3.3.1.3	SEM analysis	51
3.3.3.2	Ferrite Content Measurement	52
3.3.4	Crevice Corrosion Resistance	53
Chapter	4: Results and Discussions	55
4.1	Base Metal Characterizations:	55
4.1.1	Chemical Analysis	55
4.1.2	Microstructure of base metal	56
4.1.3	Hardness Test	57
4.2	Weld Metal Characterization	57
4.2.1	The effect of nitrogen content on heat input	57

4.2.2	Chemical analysis results	60
4.2.2.1	Effect of nitrogen shielding gas on nitrogen content in S32906 B.O.P weld metal	60
4.2.2.2	Effect of nitrogen shielding gas on nitrogen content in 25Cr 22Ni 2Mo B.O.P weld metal	61
4.2.3	Metallographic Examination	62
4.2.3.1	Macrostructure Examination	62
4.2.3.2	Microstructure Examination	66
4.2.3.3	SEM\EDX Investigation results of dissimilar welds	76
4.2.4	Ferrite Percentage Results	85
4.2.5	Vickers Macro Hardness Test Results	88
4.2.6	Vickers Micro Hardness Test Results of dissimilar welds	92
4.2.7	Charpy V-notch Impact test results of dissimilar welds	93
4.2.8	Crevice Corrosion Tests Results of dissimilar welds	94
Chapter 5: Conclusions		96
Reference	es	98