

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL DEPARTMENT

Punching Behavior of RC Slabs Retrofitted with FRP Sheets under Eccentric Loading

BY

Ahmed Hafez Abdul Hamid Dawah

B.Sc. 2009 STRUCTURAL DIVISION CIVIL ENGINEERING DEPARTMENT AIN SHAMS UNIVERSITY

A Thesis SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING (STRUCTURAL)

SUPERVISED BY

Professor Dr. Amr Ali Abdelrahman

Professor of Concrete Structures, Structural Eng. Dept., Ain Shams University

Dr. Tamer H. K. Elafandy

Associate Professor, Concrete Structure Institute, Housing and Building National Research Center

APPROVAL SHEET

: Ahmed Hafez Abdel Hamid Dawah

: Master of Science in Civil Engineering (Structural)

: Punching behavior of RC flat slabs retrofitted with

FRP sheets under eccentric loading

Examiners Committee:

Prof. Dr. Sherif Mohamed Elzeiny Mostafa
Professor of Concrete Structures
Housing and Building National Research Center

Prof. Dr. Amr Hussein Zaher
Professor of Concrete Structures, Structural Engineering Department
Faculty of Engineering - Ain Shams University

Prof. Dr. Amr Ali Abdel Rahman
Professor of Concrete Structures, Structural Engineering Department
Faculty of Engineering - Ain Shams University

Dr. Tamer Hassan Kamal Elafandy

Date: / / 2016

Associate Professor of Concrete Structures Housing and Building National Research Center

Thesis

Student Name

Thesis Title

APPROVAL SHEET

Thesis : Master of Science in Civil Engineering (Structural)
Student Name : Ahmed Hafez Abdel Hamid Dawah

Thesis Title: Punching behavior of RC flat slabs retrofitted with

FRP sheets under eccentric loading

Supervision Committee:	<u>Signature</u>
Prof. Dr. Amr Ali Abdel Rahman Professor of Concrete Structures, Structural Engineering Department Faculty of Engineering - Ain Shams University	
Dr. Tamer Hassan Kamal Elafandy Associate Professor of Concrete Structures Housing and Building National Research Center	

Date: / / 2016

Acknowledgements

First of all, I thank **ALLAH** who guided and helped me to finish this work in the proper shape.

I would like to express my deepest appreciation to **Prof. Dr. Amr Ali Abdelrahma,** Professor of Concrete Structures Faculty of Engineering, Ain Shams University, for his guidance and valuable suggestions.

I would like to express extremely grateful to **Dr. Tamer Hassan Kamal Elafandy**, Associate Professor of Concrete Structures, Housing and Building National Research Center, Giza, Egypt, for his experienced advice, continuous and deep encouragement through all phases of the work.

Special thanks to Engineer Ahmed Zaki Elmenawy for his support.

Finally, I would like to thank my family specially my Mother and Father and my Wife for their continuous encouragement, over whelming support, fruitful care and patience, especially during the hard times

TABLE OF CONTENTS

TAB	LE OF CONTENTS	I
LIST	OF FIGURES	V
LIST	OF TABLES	XVI
LIST	OF EQUATIONS	XVII
LIST	OF SYMBOLS	XVIII
ABS	TRACT	1
1. IN	NTRODUCTION	3
1.1	GENERAL	3
1.2	OBJECTIVES	5
1.3	SCOPE AND CONTENTS	5
1.4	SCOPE AND CONTENTS	
PHA	ASE I: EXPERIMENTAL INVESTIGATION	6
PHA	ASE II: ANALYTICAL STUDY	6
PHA	ASE III: DESIGN RECOMMENDATIONS	6
2. L	ITERATURE REVIEW	9
2.1	GENERAL	9
2.2	EVALUATION OF PUNCHING SHEAR IN FLAT	
	SLABS	10
2.3	COLUMN CONNECTION WITH SHEAR	
	REINFORCEMENTS FOR LATERAL LOADING	12

2.4	STUD SHEAR REINFORCEMENTS DESIGN FOR	
	SLABS	13
2.5	CONCRETE SLABS WITH STUD SHEAR	
	REINFORCEMENT	15
2.6	REHABILITATION OF DAMAGED RC FLAT SLAI	3 17
2.7	ALTERNATIVE SHEAR REINFORCEMENT FOR	
	RC FLAT SLABS	18
2.8	CONCRETE SLABS WITH FRP REINFORCING	
	BARS OR GRIDS	21
2.9	RETROFIT OF SLAB-COLUMN CONNECTIONS	
	USING CFRP	23
3.0	STRENGTHENING OF CONNECTIONS USING	
	CFRP STRIPS	23
3.1	RC SLABS STRENGTHENED WITH GFRP	
	LAMINATES	25
3.2	FRP STRENGTHENING OF TWO WAY SLABS	27
3.3	STRENGTHENING CONCRETE SLABS FOR	
	PUNCHING SHEAR WITH CFRP	28
3. E	XPERIMENTAL WORK	30
3.1	GENERAL	30
3.2	TEST SPECIMENS	31
3.2.	1 FABRICATION OF TESTED SPECIMENS	37
3.3	INSTRUMENTATION	41
3 3	1 STRAIN GAUGES	41

3.3.2 LVDT	42
3.3.3 TEST SETUP	43
3.3.4 TESTING PROCEDURE	45
3.4 MATERIALS	45
4. EXPERIMENTAL RESULTS	49
4.1 INTRODUCTION	49
4.2 EXPERIMENTAL RESULTS	50
4.3 DISCUSSION OF EXPERIMENTAL RESULTS	66
4.3.1 AMOUNT OF CFRP SHEET	69
4.3.2 DISTRIBUTION OF CFRP SHEET	71
4.3.3 SPACING OF CFRP SHEET	73
4.3.4 ARRANGEMENT OF STITCHING CFRP SHEET	Γ75
5. DISCUSSION OF ANALYTICAL	
CALCULATIONS AND CODE PROVISIONS	77
5.1 INTRODUCTION	77
5.2 CAPACITY LOSS AT PUNCHING FAILURE	77
5.3 ULTIMATE LOAD CAPACITY OF THE SLAB	82
5.4 DESIGN APPROCH IN DIFFERENT CODES	82
5.3.1 ACCORDING TO ACI-318	82
5.3.2 ACCORDING TO BS-8110	85
5.3.3 ACCORDING TO EURO CODE 2	85

5.4	SAMPLE OF CALCULATIONS	88
5.4.	1 ACCORDING TO ACI-318	88
5.4.	2 ACCORDING TO BS-8110	92
5.4.	3 ACCORDING TO EURO CODE 2	93
6. C	ONCLUSION AND RECOMMENDATION	94
6.1	INTRODUCTION	94
6.2	CONCLUSIONS	94
6.3	RECOMMENDATIONS FOR FUTURE RESEARCH	97
REF		

LIST OF FIGURES

Figure	LIST OF FIGURES	
1	Test specimen subjected to axial force V combined with	
	lateral forces P.	10
2	Combined action of shear and shear due to moment	
	transfer at interior column	11
3	Assembly of Shear Studs	14
4	Typical stud-shear reinforcement arrangement	14
5	Truss model for edge column-slab connection.	16
6	Stud rail shear reinforcement	19
7	Inclined Shear band reinforcement	19
8	Positions of instrumentation	20
9	Specimen and loading geometry	22
10	CFRP strengthening schemes	24
11	Schematics of test setup	26
12	Punching cone of specimen strengthened with glass	
	fiber-reinforced polymer laminate	26
13	Shear reinforcement arrangements and assumed Critical	
	shear section perimeters	29
14	Concrete and steel reinforcement details for all tested	
	specimens	31

15	Strengthening details of specimen (S01)	.32
16	Strengthening details of specimen (S02)	.33
17	Strengthening details of specimen (S03)	.34
18	Strengthening details of specimen (S04)	.35
19	Strengthening details of specimen (S05)	.36
20	Steel Reinforcement Cage.	.37
21	Steel Reinforcement installed in Plywood Forms.	.37
22	Steel Reinforcement installed in Plywood Forms	.38
23	Compacting of Concrete using electrical vibrator	.38
24	Application of CFRP as shear reinforcement	.39
25	drilling holes for CFRP stitches according to scheme	.39
26	Specimen "SP04" after drilling all holes	.39
27	Cutting the CFRP according to the strengthening scheme	.40
28	Mixing Sikadur 31CF	.40
29	Surface leveling and edge rounding using Sikadur 31CF	.40
30	Apply the adhesive epoxy to the CFRP laminates	.40
31	Installing the CFRP laminates	.41
32	strengthening one of the strengthened specimens after	
	installing all of the CFRP laminates	.41
33	Location of steel strain gauges	.42
34	Location of LVDT	.42

35	Arrangement of Pots Over the specimens	43
36	Layout of test specimens	44
37	Test Setup at HBRC Lab	44
38	Shows the Concrete Cube Test	46
39	Sikadur 31CF Components for surface preparation	47
40	Comparison Between the tested specimens to show the	
	maximum and Elastic Peak measure load for all tested	
	specimens	52
41	Comparison Between the tested specimens to show the	
	Failure and Elastic Peak Deflections for all tested	
	specimens	52
42	Load and vertical Deflection at LVDT of S0	53
43	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S0)	54
44	Bottom of the Control specimen (S0)	54
44	Bottom of the Control specimen (S0)	
	Bottom of the Control specimen (S0) The Steel Reinforcement Strain in the Control specimen	
	Bottom of the Control specimen (S0) The Steel Reinforcement Strain in the Control specimen (S0)	
	Bottom of the Control specimen (S0) The Steel Reinforcement Strain in the Control specimen (S0) The Maximum, Failure and Maximum elastic deflection	54

47	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S01)	56
48	The Maximum, Failure and Maximum elastic deflection	
	along the specimen center line of the Control specimen	
	(S01)	57
49	Load and vertical Deflection at LVDT of S02	58
50	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S02)	58
51	The Steel Reinforcement Strain in the Control specimen	
	(S02)	59
52	The Maximum, Failure and Maximum elastic deflection	
	along the specimen center line of the Control specimen	
	(S02)	59
53	Load and vertical Deflection at LVDT of S03	60
54	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S03)	61
55	The Maximum, Failure and Maximum elastic deflection	
	along the specimen center line of the Control specimen	
	(S03)	61
56	Load and vertical Deflection at LVDT of S04	62

57	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S04)	.63
58	The Maximum, Failure and Maximum elastic deflection	
	along the specimen center line of the Control specimen	
	(S04)	.63
59	Load and vertical Deflection at LVDT of S05	.64
60	The Crack Pattern and Mode of Failure at the Top and	
	Bottom of the Control specimen (S05)	.65
61	The Steel Reinforcement Strain in the Control specimen	
	(S05)	.65
62	The Maximum, Failure and Maximum elastic deflection	
	along the specimen center line of the Control specimen	
	(S05)	.66
63	Load deflection Curve of All tested specimens at	
	midpoint of specimen (LVDT 01)	.66
64	Steel Reinforcement Strain of All tested specimens	.68
65	Load Deflection Curves to study the Effect of the CFRP	
	Amount	.69
66	Maximum Load and Percentage of Increase of Capacity	.69
67	Ductility and Percentage of Increase in ductility	.70

68	Load Deflection Curves to study the Effect of the CFRP
	Distribution
69	Maximum Load and Percentage of Increase of Capacity71
70	Ductility and Percentage of Increase in ductility72
71	Load Deflection Curves to study the Effect of the
	spacing CFRP
72	Maximum Load and Percentage of Increase of Capacity73
73	Ductility and Percentage of Increase in ductility74
74	Load Deflection Curves to study the Effect of the CFRP
	Arrangement
75	Maximum Load and Percentage of Increase of Capacity76
7576	Maximum Load and Percentage of Increase of Capacity76 Ductility and Percentage of Increase in ductility
76	Ductility and Percentage of Increase in ductility76
76 77	Ductility and Percentage of Increase in ductility
767778	Ductility and Percentage of Increase in ductility
76777879	Ductility and Percentage of Increase in ductility

LIST OF TABLES

Table	
1	Material and geometry properties of test specimens22
2	Detail of specimens strengthening schemes
3	Concrete Mix Proportions45
4	The Yield Strength, Ultimate Strength and Elongation47
5	Technical data of CFRP sheets
6	Maximum Measured Load, Measured Deflections at Elastic Peak
	and Ultimate loads, Ductility and Modes of Failure51
7	Comparison between the Experimental Program Results and the
	Proposed Design Equations