EFFECT OF SOME RARE EARTH ELEMENTS ON YIELD AND QUALITY OF SUPERIOR GRAPES

By

NAGLAA ABD EL KADER ALI

B.Sc. Agric. Sc. (General Division), Banha Univ., 1997M.Sc. Agric. Sc. (Environmental Agricultural Science), Institute of Agricultural Studies and Research, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Agricultural Sciences (Pomology)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME RARE EARTH ELEMENTS ON YIELD AND QUALITY OF SUPERIOR GRAPES

By

NAGLAA ABD EL KADER ALI

B.Sc. Agric. Sc. (General Division), Banha Univ., 1997M.Sc. Agric. Sc. (Environmental Agricultural Science), Institute of Agricultural Studies and Research, Ain Shams University, 2012

This thesis for Ph.D. degree has been approved by:

Date of Examination: 9 /8/2017

•
Gamal Abdrabboh Elsayed Abdrabboh Prof. of Pomology, Faculty of Agriculture, Al-Azhar University
Alaa El-Din Zaki Bondok Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University.
Nasr Abd El Aziz Abd-El Fatah Associate Professor of Chemistry, Production Sector, Nuclear Materials Authority.
Nazmy Abde Elhamid Abde Elghany Prof. of Pomology, Faculty of Agriculture, Ain Shams University.

EFFECT OF SOME RARE EARTH ELEMENTS ON YIELD AND QUALITY OF SUPERIOR GRAPES

By

NAGLAA ABD EL KADER ALI

B.Sc. Agric. Sc. (General Division), Banha Univ., 1997M.Sc. Agric. Sc. (Environmental Agricultural Science), Institute of Agricultural Studies and Research, Ain Shams University, 2012

Under the Supervision of:

Dr. Nazmy Abde Elhamid Abde Elghany

Prof. of Pomology, Dept.of Horticulture., Faculty of Agriculture, Ain Shams University (Principal supervisor).

Dr. Mahmoud Fathi Mekled

Lecturer of Pomolgy, Dept.of Horticulture., Faculty of Agriculture, Ain Shams University

Dr. Nasr Abd El Aziz Abd-El Fatah

Associate Professor of Chemistry, Production Sector, Nuclear Materials Authority.

ABSTRACT

Naglaa Abd El Kader Ali: Effect of Some Rare Earth Elements on Yield and Qualtiy of Suerior Grapes. Unpublished Ph.D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2017.

This study was carried out during 2014 and 2015 seasons in a private farm, located at Km 64 Cairo-Alexandria desert road, on mature Superior grapevines (Vitis vinifera L). The vines were 5 years old grown in sandy loam soil, spaced at 2×3 meters trained as Y shape system irrigated through drip irrigation system. The study aimed to investigate the effect of some rare earth elements (REEs) and their mixture on the yield and quality of Superior grapes. The study included 13 treatments which were: lanthanum (La), cerium (Ce), neodymium (Nd), and their mixture at 5, 10, 20 ppm in addition to control. Treatments were arranged in a complete randomized block design. The clusters of each treatment were dipped twice in the treatments, the first was at fruit set and the second during veraison stage. The obtained results indicated that 10 ppm of (Nd) recorded significant increments in yield/vine and berry length, While 10 ppm of (La) gave the highest values of weight and volume of 100 berries and Ca content. Moreover, 5 ppm of (Ce) recorded the highest values of cluster length, firmness, Ca and P contents, On the other side, the application of 10 ppm (Ce) and 20 ppm Mixture gave the lowest values of berry shuttering percentage and the highest fruit potassium content. The study recommended that its important to apply Superior grapevine twice, first at fruit set and second at vraison stage with low concentrations of REEs i.e., (Ce), (La) and (Nd) or their mixture to increase yield and quality and decrease berry shuttering.

Key words: Grapes, Cerium, Lanthanum, Neodymium, Yield, Quality and Mineral contents.

ACKNOWLEDGEMENT

First and forever, ultimate thanks and praise are due to **ALLAH** who without this support, this work could not have been accomplished.

I wish to offer my sincere gratitude to **Dr. Nazmy Abd El hamid Abd El ghany** Vice president of Ain Shams University and Prof; of Pomology, Horticulture Department, Faculty of Agriculture, who kindly devoted a great deal of his valuable time for this work. Also to his supervision guidance, encouragement, valuable suggestions and endless advice.

I would like to thank also **Dr. Mahmoud Fathi Mekled** Lecturer of Pomolgy, Dept.of Horticulture, Faculty of Agriculture, Ain Shams University for his supervision and valuable help in the preparation of this work.

Really, I want to express my deep thanks to **Dr. Nasr Abd El Aziz Abd El Fatah**, Associate Professor of Chemistry, Production Sector, Nuclear Materials Authority for his fairly supervision, valuable suggestions during all steps of this work.

Deep gratitude and thanks are recorded especially to **Dr. Kamal Abd-elbaky**, Head of production Sector, Nuclear Materials Authority, for continuous encouragement, and offering the facilities during all steps of this work.

Special thanks are offered to **Dr. Omnia El Hosseni**, Head of Pilot Experimental Department, Nuclear Materials Authority for her encouragement, and offering the facilities during all step of the work

My cordial thanks are recorded to **Dr. Ghada Mahmoud** Associate Prof of chemistry, **Dr. Aziza Ibrahim Lutfi** lecturer of chemistry, Nuclear Materials Authority for their valuable advice during the experimental work.

Finally, I am very grateful to **my family** for the continuous encouragement and advice during this work.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Definition of rare earth elements	3
2.2. Benefits of rare earth elements	3
2.3. Historical of research and application of REEs in	
agriculture	4
2.4. REEs Resources in Egypt	5
2.5. Effect of rare earth elements on seed germination and	
plant growth	6
2.6. Effect of rare earth elements on flowering	9
2.7. Effect of rare earth elements on grapes	10
2.8. Effect of REEs on yield and quality of agricultural	
crops	12
2.9. Effect of REEs on chemical composition of plants	14
2.10. Normal rare earth elements concentrations in plant and	
soil	18
2.11. Effect of rare earth elements on plant diseases	21
3. MATERIALS AND METHODS	22
RESULTS AND DISCUSSION	27
4. Effect of rare earth elements and their effects on yield and	
quality of superior grapes	27
4.1 Total yield / vine	27
4.2. Cluster weight	27
4.3. Berry shutter	28
4.4 Cluster length	28
4.5. Berry width	34
4.6. Total soluble solids	34
4.7. T.S.S / acidity ratio.	34
4.8. Weight of 100 berries	34

	Page
4.9. The volume of 100 berries	40
4.10. Total acidity	40
4.11. Cluster width	40
4.12. Berry weight	41
4.13. Berry length	46
4.14.Berry firmness	46
4.15. Bruch length	46
4.16.Tours thickness	47
4.17. Nitrogen percent	53
4.19. Potassium percent	53
4.20.Calcium percent	53
4.21.Magnesium content	59
4.22. Zinc content	59
4.22. Manganese content	59
4.23. Nitrate and nitrite concentration in the fruits	65
4.24. Rare earth residues in grape fruits	66
4.25 Conclusion and recommendations	69
4. SUMMARY AND CONCLUSION	70
5. REFERENCES	75
7 . ARABIC SUMMARY	

LIST OF TABLES

Table No) .	Page
(A):	The chemical properties of rare earth elements	22
(B) :	Operation conditions for ICP-MS analysis	25
(1) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on yield, cluster characteristics and berry	
	shutter of Superior grapes in 2014 and 2015 seasons	29
(2) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on berry characteristics of Superior	
	grapes in 2014&2015 seasons	35
(3) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on berry characteristics of Superior	
	grapes in 2014&2015 seasons	42
(4) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on berry characteristics of Superior	
	grapes in 2014&2015 seasons	48
(5) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on nitrogen, phosphorus, potassium and	
	calcium contents of Superior grapes during 2014 and	
	2015 seasons	54
(6) :	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on manganese, zinc and magnesium	
	contents of Superior grapes during 2014 and 2015	
	seasons	61

(7):	Effect of some rare earth elements with different	
	concentrations applied either individually or in	
	combinations on nitrate and nitrite contents of superior	
	grape fruits during 2014 and 2015 seasons	66
(8) :	Effect of rare earth elements on residues of lanthanum,	
	cerium and neodymium in grapevine fruits during 2014	
	and 2015 seasons	68

LIST OF FIGURES

Fig. N	0.	Page
(1)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on yield of Superior grapes in 2014 season	30
(2)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on yield of Superior grapes in 2015 season	30
(3)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on Cluster weight of Superior grapes in	
	2014 season	31
(4)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on cluster weight of Superior grapes in	
	2015 season	31
(5)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry shuttering percentage of Superior	
	grapes in 2014 season	32
(6)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry shutter percentage of Superior	
	grapes in 2015 season	32
(7)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on cluster length of Superior grapes in	
	2014season	33
(8)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on cluster length of Superior grapes in	a -
	2015 season	33

Fig. N	0.	Page
(9)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry width of Superior grapes in	
	2014season	36
(10)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry width of Superior grapes in	
	2015season	36
(11)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on TS S of Superior grapes in 2014	
	season	37
(12)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on TSS of Superior grapes in 2015 season	37
(13)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on TSS / acidity of Superior grapes in	
	2014 season	38
(14)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on TSS / acidity ratio of Superior grapes	
	in 2015 season	38
(15)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on weight of 100 berries of Superior	
	grapes in 2014 season	39
(16)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on weight of 100 berries of Superior grapes	
	in 2015 season	39

Fig. N	0.	Page
(17)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on cluster width of Superior grapes in	
	2014 season	43
(18)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on cluster width of Superior grapes in	
	2015 season	43
(19)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on volume of 100 berries of Superior	
	grapes in 2014 season	44
(20)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on volume of 100 berries of Superior	
	grapes in 2015 season	44
(21)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry weight of Superior grapes in 2014	
	season	45
(22)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry weight of Superior grapes in 2015	
	season	45
(23)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry length of Superior grapes in 2014	
	season	49

(24)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry length of Superior grapes in 2015	
	season	49
(25)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry firmness of Superior grapes in	
	2014 season	50
(26)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on berry firmness of Superior grapes in	
	2015 season	50
(27)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on Bruch length of Superior grapes in 2014	
	season.	51
(28)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on Bruch length of Superior grapes in	
	2015 season	51
(29)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on torus thickness of Superior grapes in	
	2014 season	52
(30)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on torus thickness of Superior grapes in	
	2015 season	52
(31)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on nitrogen percentage of Superior grapes	
	in 2014 season	55

(32)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on nitrogen percentage of Superior grapes	
	in 2015 season.	55
(33)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on phosphorous percentage of Superior	
	grapes in 2014 season	56
(34)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on phosphorous percentage of Superior	
	grapes in 2015 season	56
(35)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on potassium percentage of Superior	
	grapes in 2014 season	57
(36)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on potassium percentage of Superior	
	grapes in 2015 season	57
(37)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on calcium percentage of Superior grapes	
	in 2014season	58
(38)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on calcium percentage of Superior grapes	
	in 2015 season	58
(39)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on magnesium percentage of Superior	
	grapes in 2014 season	62

(40)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on magnesium percentage of Superior	
	grapes in 2015 season	62
(41)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on zinc content of Superior grapes in 2014	
	season	63
(42)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on zinc content of Superior grapes in	
	2015season	63
(43)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on manganese content of Superior grapes	
	in 2014 season	64
(44)	Effect of some rare earth elements; Lanthanum, Cerium,	
	Neodymium applied either individually or in	
	combinations on manganese content of Superior grapes	
	in 2015 season	64