

Preparation of imprinted chitosan nanoparticles for the selective removal of some organic pollutants

By

Nader Mostafa Mohamed Abdel-Ber

B.Sc. in Chemistry, Faculty of Science El-Mina University (2009)

Under supervision of

Prof. Dr. Ashraf Abdel- Aaty Mohamed

Professor of analytical chemistry, Faculty of Science, Ain Shams University

Dr. Mohamed Abdel- Hay Ahmed

Associate professor of physical chemistry, Faculty of Science,
Ain Shams University
2017

Preparation of imprinted chitosan nanoparticles for the selective removal of some organic pollutants

A Thesis

Submitted to Chemistry Department - Faculty of Science - Ain Shams University in partial fulfillment of the requirements for the degree of Master in Science (Analytical Chemistry)

By

Nader Mostafa Mohamed Abdel-Ber

B.Sc. in Chemistry, Faculty of Science El-Mina University 2009

Thesis supervisors

- 1. Prof. Dr. Ashraf Abdel- Aaty Mohamed

 Professor of analytical chemistry,
 Faculty of Science, Ain Shams University
- **2. Dr. Mohamed Abdel- Hay Ahmed**Associate professor of physical chemistry,
 Faculty of Science, Ain Shams University

Head of Chemistry Department Prof. Dr. IbrahimH.A.Badr

• • • • • • • • • •

Student Name : Nader Mostafa Mohamed Abdel-Ber

Scientific Degree :M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2009

Granting Year :2017

ACKNOWLEDGMENT

Praise and thanks to Allah, for helping and directing me to the right path. Special thanks are due to my research supervisorsprof. Dr. Ashraf Abdel- Aaty Mohamed and Dr. Mohamed Abdel- Hay Ahmedfor their valuable guidance, constructive criticism and encouragement during every stage of this work. Also, thanks to the staff in the department of chemistry, Ain-Shams University for their help.

Finally, I would like to thank my parents for supporting me spiritually throughout my life.

Nader Mostafa

Abstract

Herein, new molecular imprinted polymers (MIPs) based on chitosan-TiO₂ nanocomposite (CTNC) was prepared for the selective and quantitative removal of Congo red (CR) and Rose bengal (RB) dyes, as model organic pollutants, from industrial waste water. The physicochemical features of the prepared MIPs been investigated using XRD, FTIR, N₂-adsorptiondesorption isotherm, SEM and HRTEM. The results have pointed out the existence of high surface area MIP nanoparticles 95 m²/g and $184.9 \text{ m}^2/\text{g}$ for RB and CR. respectively, with wide mesoporous channels that are very accessible to attract the dye molecules. Exceptional uptake of dye was registered (q_m=79.3651) mg/g for RB and (q_m=138 mg/g) for CRreflecting the high selectivity of MIP in attracting the dye molecules compared to that of pure chitosan. The mechanism of adsorption Freundlich, investigated using Langmuir, Dubinin was Radushkevich and Temkin models. However, the kinetics of the removal was explored by pseudo-first, pseudo second order and Weber-Morris models. The Experimental data fit well into pseudo-second order kinetic model, and much well with the Langmuir isotherm confirming the formation of monolayer of dye molecules. The enthalpy of adsorption was 62.279 kj/mol and 67.79kj/mol for RB and CR respevively, showing strong interaction of MIP with the dyes. The prepared MIPs exhibits good reproducibility and satbility. Subsequently, the novel CTNC-MIP nanoparticles were successfully applied for selective and quantitative removal of RB and CR dyes from textile wastewaters.

List of Contents

Acknowledgment	I
Abstract	П
List of tables	VII
List of figures	VIII
List of Abbreviations and symbols	XI
CHAPTER 1Introduction and literature review	
1. Introduction	2
1.1 Acid dyes	4
1.2 Congo red	5
1.3 Rose Bengal	6
1.4 Techniques used for Removal of Toxic dyes from Wastewater	7
1.4.1 Coagulation and Flocculation	7
1.4.2 Reverse Osmosis	8
1.4.3 Adsorption on Activated Carbon	9
1.4.4 Nanofilteration (NF)	10
1.4.5 Photochemical and Biological Treatment	11
1.4.6 Molecularly Imprinted Polymers (MIP's)	12
1.5 Chitosan	15
1.6 Titanium Dioxide (TiO ₂)	17
1.7 Thesis Objectives	18
1.8 Literature Review	20
Chapter 2: MATERIALS AND METHODS	
2.1 Materials and Methods	28
2.2 Preparation of dye solutions	30
2.3 Preparation of CTNC-MIP	30
2.4 Characterization and analysis	31
2.4.1 UV-vis diffuse reflectance spectroscopy	31
2.4.2 pH meter	32
2.4.3 X-ray diffraction (XRD) analysis	32
2.4.4 High resolution Transmission electron microscope (HRTEM)	33
2.4.5 Fourier- transform infrared (FT-IR) spectra	33
2.4.6 Nitrogen- surface area measurements (BET)	33
2.4.7 Scanning electron microscope (SEM)	34
Chapter 3 -Results and Discussion Part I:Congo Red	
3.1Characterization of CTNC-MIP for selective removal of CR	36
3.1.1 Fourier-transform infrared (FT-IR) spectra	36
3.1.2 High Resolution Transmission electron microscopy (HRTEM).	39
3.1. X-ray diffraction (XRD) analysis	39
3.1.4 Textural analysis	42
3.1.5 Scanning electron microscopy (SEM)	44

3.2Adsorption experiments	45
3.2.1 Effect of Contact Time on CR adsorption	45
3.2.2 Effect of Concentration on CR adsorption	56
3.2.3 The influence of pH	47
3.2.4 Adsorption Kinetics	49
3.2.4.1 Pseudo-First-Order model	49
3.2.4.2 Pseudo-Second-Order model	50
3.2.4.3 Elovich Model	52
3.2.4.4 Weber and Morris model	52
3.3 Adsorption Isotherms	55
3.3.1 Langmuir Isothermal Model	55
3.3.2 Freundlich Isothermal Model	56
3.3.3 Temkin Isothermal Model	59
3.3.4 Dubinin-Radushkevich Isothermal Model	60
3.4Effect of Temperature on Adsorption	65
3.5 Comparison between Chitosan and CTNC on Adsorption of CR	67
3.6 Catalyst Regeneration	68
3.7 Application for real sample analysis	70
3.8 Comparison with other studies	70
Chapter 3 -Results and Discussion PART II: Rose Bengal	
3.9Characterization of CTNC-MIP for selective removal of RB	77
3.9.1Fourier-transform infrared (FT-IR) spectra	77
3.9.2High Resolution Transmission electron microscopy (HRTEM)	78
3.9.3X-ray diffraction (XRD) analysis	80
3.9.4Textural analysis	81
3.9.5Scanning electron microscopy (SEM)	83
3.10Adsorption experiments	84
3.10.1Effect of Contact Time on RB adsorption	84
3.10.2 Effect of Concentration on RB adsorption	85
3.10.3 The influence of pH	86
3.10.4 Adsorption Kinetics	87
3.10.4.1 Pseudo-First-Ordermodel	88
3.10.4.2 Pseudo-Second-Ordermodel	88
3.10.4.3 Elovich Model	91
3.10.4.4 Weber and Morris model	91
3.11 Adsorption Isotherms	95
3.11.1 Langmuir Isothermal Model	96
3.11.2 Freundlich Isothermal Model	96
3.11.3 Temkin Isothermal Model	99
3.11.4 Dubinin-Radushkevich Isothermal Model	100
3.12Effect of Temperature on Adsorption	103
3.13 Comparison between Chitosan and CTNC on Adsorption of RB	

dye	
3.14MIP Regeneration	
3.15 Application for real sample analysis	
Conclusions	
References	
Arabic Summary.	

List of Tables

2.1 Identification Ammonium persulfate	29
2.2Identification table of Congo red	29
2.3 Identification table of Rose Bengal	29
3.1 Kinetics parameters of pseudo-first-order rate equation and the	
pseudo-second-order rate equation for Congo red adsorption on	
CTNC- MIP	53
3.2 Elovich and Weber-Morris models for Congo red adsorption	
on CTNC-MIP	53
3.3 Langmuir and Freundlich adsorption constants for Congo red	
on CTNC-MIP	63
3.4 Temkin and Dubinin models adsorption constants for Congo	
red on CTNC-MIP	63
3.5 Thermodynamic parameters of CR adsorption on CTNC-	
MIP	67
3.6 Recent reported adsorbent systems for CR removal	72
3.7Kinetics parameters of pseudo-first-order rate equation and the	
pseudo-second-order rate equation for Rose Bengal adsorption	
on CTNC-MIP	94
3.8Elovich and Weber-Morris models for Rose Bengal adsorption	
on CTNC-MIP	94
3.9 Langmuir and Freundlich adsorption constants for Rose	
Bengal on CTNC-MIP	103
3.10 Temkin and Dubinin models adsorption constants for Rose	
Bengal on CTNC-MIP	103
3.11 Thermodynamic parameters of RB adsorption on CTNC-	
MIP	106

List of figures

1.1: Skeletal formula of Congo red	5
1.2: Skeletal formula of Rose Bengal	6
1.3: Schematic synthesis of molecularly imprinted polymer	13
1.4: preparation of molecularly imprinted polymer	13
1.5: Skeletal formula of Chitosan	15
1.6: Skeletal formula of Titanium dioxide (TiO ₂)	18
2.1: Schematic diagram of ammonium persulfate	28
3.1: FT-IR for (1) Chitosan, (2) CR, (3) TiO ₂ , (4) MIP, (5)	
LMIP and (6) NIP	38
.3.2: HRTEM for Chitosan (bI), CTNC MIP (bII), CTNC LMIP	
(bIII)	41
3.3: XRD forTiO ₂ (a), CTNC LMIP (b), CTNC MIP (c), and	
Chitosan(d)	40
3.4: Nitrogen adsorption/desorption isotherm	43
3.5: Pore size distribution according to BJH analysis	43
3.6 SEM micrograpghs, CTNC-MIP (1), CTNC-LMIP (2)	44
3.7: Effect of contact time on CR adsorption by CTNC	46
3.8: Influence of pH on the adsorption capacity of CR on CTNC	
MIP	48
3.9: The pseudo-First-order model. (The initial CR	
concentrations were 5×10^{-5} mole L^{-1})	51
	01
3.10 The pseudo-second-order model. (The initial CR	<i>5</i> 1
concentrations were 5×10^{-5} mole L ⁻¹)	51
3.11: The Elovich model. (The initial CR concentrations were	
$5x10^{-5}$ mole L ⁻¹)	54
3.12: The Weber and Morris model. (The initial CR concentrations	
were $5x10^{-5}$ mole L ⁻¹)	54
3.13: The Langmuir isotherm model. (The concentration of CTNC	
was 0.03 g L^{-1})	58
3.14: The freundlich isotherm model. (The concentration of CTNC	
was 0.03 g L^{-1})	58
3.15: The Temkin isotherm model. (The concentration of CTNC was	
0.03 g L^{-1})	62
3.16: The The Dubinin Radushkevich isotherm model. (The	
concentration of CTNC was 0.03 g L ⁻¹)	62
3.17: The adsorption heat capacity of CR on CTNC MIP. ($C_0=50 \text{ ml}$	
$(5x10^{-5} \text{ mole L}^{-1})$	65
3.18: Adsorptions of CR dye on CTNC-MIP and Chitosan. (Co= 50	

ml $(5x10^{-5} \text{ mol L}^{-1})$	69
CTNC was 1 g L ⁻¹)	69
3.20: Application for CTNC MIP for removal CR from waste of	0)
Textile Company	71
3.21: adsorption of CR using CTNC-MIP ((C_0 =50 mL (5x10 ⁻⁵ mol	, 1
L^{-1}), temperature =30 °C, stirring rate 700 rpm and W=0.03	75
g)	7.5
3.22: adsorption of CR using CTNC-MIP (($C_0=50 \text{ mL } (3x10^{-5} \text{ mol L})^{-5}$	
1), temperature = 30 $^{\circ}$ C, stirring rate 700 rpm and W=0.03 g)	76
3.23: FT-IR for (1) Chitosan, (2) RB, (3) TiO ₂ , (4) MIP, (5) LMIP	, 0
and (6) NIP	79
2.24: HRTEM for Chitosan (bI), CTNC MIP (bII), CTNC LMIP	
(bIII)	79
3.25: XRD for CTNC LMIP (1), CTNC MIP (2), TiO ₂ (3) and	
Chitosan (4)	80
3.26: Nitrogen adsorption/desorption isotherm for RB CTNC	82
3.27: Pore size distribution according to BJH analysis	82
3.28:SEM micrographs, CTNC-MIP (1), CTNC-LMIP (2)	83
3.29: Effect of contact time on RB adsorption by CTNC, (The	63
	85
initial RB concentration was $3x10^{-5}$ mole L ⁻¹)	63
3.30: Influence of pH on the adsorption capacity of RB on CTNC	
MIP ($C_0=50 \text{ ml of } 3x10^{-5} \text{ mole L}^{-1}$)	87
3.31: The pseudo-First-order (The initial RB concentrations were	
$3x10^{-5} \text{ mol } L^{-1}$)	90
3.32: The pseudo-second-order models. (The initial RB	0.0
concentrations were $3x10^{-5}$ mole L^{-1})	90
3.33: The Elovich (The initial RB concentrations were $3x10^{-5}$ mole	0.2
L^{-1})	93
3.34: The Weber and Morris model. (The initial RB concentrations	0.2
were $3x10^{-5}$ mole L ⁻¹)	93
3.37: The Langmuir isotherm model. ($C_0=50 \text{ ml } (3x10^{-5} \text{ mole})$	00
L^{-1})	98
3.38: The Freundlich isotherm model. ($C_0=50 \text{ ml } (3x10^{-5} \text{ mole})$	
L^{-1})	98
3.39: The Temkin model. $(C_0=50 \text{ ml } (3x10-5 \text{ mole})$	102
L^{-1})	
3.40: The Dubinin Radushkevich – models. ($C_0=50 \text{ ml } (3x10^{-5})$	
mole L^{-1})	102
,	102
3.40: The adsorption heat capacity of RB on CTNC MIP.	

$(C_0 = 50)$	ml	(3x	10^{-5}	mole	106
L^{-1})	• • • • • • • • • • • • • •	•••••			
3.41: The adsorpti	on of RB dy	e on CTN	C-MIP and Cl	hitosan	
$(C_0=50 \text{ ml } (3))$	x10 ⁻⁵ mole L	¹)	• • • • • • • • • • • • • • • • • • • •	•••••	108
3.42: The rege	neration cy	cles of	CTNC-MIP	(The	
concentration	of CTNC wa	s 1 g L^{-1}).	• • • • • • • • • • • • • • • • • • • •	••••	108
3.43: Application f	or CTNC MI	P for remo	val RB from w	aste of	
Textile Comp	any	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •	110
3.44: adsorption of l	RB using CTN	IC-MIP ((C	20=50 mL (3x10))-5 mol	
L ⁻¹), temperatu	are $=30$ oC, st	tirring rate	700 rpm and V	W = 0.02	
g)	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••	111
3.45: adsorption of	RB using C	TNC-MIP	$((C_0=50 \text{ mL})$	$(2x10^{-5})$	
mol L ⁻¹), tem	perature =30	°C, stirri	ng rate 700 rp	m and	
W=0.02 g)	• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		112

List of Abbreviations

AOP'S	Advanced Oxidation processes
CR	Congo red
CTNC	Chitosan-Titanium nanocomposite
DLLME	Dispersive Liquid-Liquid Micro extraction
FTIR	Fourier transform infrared spectroscopy
HRTEM	High Resolution Transmission electron microscope
LMIP	Leached Molecularly Imprinted Polymer
MIP	Molecularly Imprinted Polymer
MIT	Molecularly Imprinted Technique
МО	methyl Orange
NF	Nanofilteration
NIP	Non Imprinted Polymer
рН	The negative Logarithm of hydrogen ion
RB	Rose Bengal
RO	Reverse Osmosis
SEM	Scanning Electron Microscopy
TiO ₂	Titanium dioxide

CHAPTER ONE INTRODUCTIONAND LITERATURE REVIEW