

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

NUTRITIONAL AND PHYSIOLOGICAL STUDIES ON MEDITERRANEAN FRUIT FLY Ceratitis capitata (Wied.)

zxx cf

BY

TAREK ABDEL ATY ABDEL HAFIZ

B.SC (ENTOMOLOGY), CAIRO UNIVERSITY M.SC. (ENTOMOLOGY) CAIRO UNIVERSITY

THESIS

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Under supervision of

* Prof. Dr.
Amina M. Abdel-Rahman
Prof. of insect control
Department of Entomology
Faculty of Science. Cairo University.

* Res. Prof. Dr.
Abdel-Fattah G. Hashem
Prof. of entomology
Horticulture Insect Res. Depart.
PPRI . ARC

ENTOMOLOGICAL SCIENCE DEPARTMENT OF ENTOMOLOGY, FACULTY OF SCIENCE, CAIRO UNIVERSITY

Approval Sheet

Title of the Ph.D. Thesis

NUTRITIONAL AND PHYSIOLOGICAL STUDIES ON FRUIT Fly Ceratitis capitata (Wied).

Name of Candidate

TAREK ABDEL ATY ABDEL HAFIZ

Submitted to Faculty of Science, CAIRO UNIVERSITY

Supervision Committee:

Prof. Dr.	Amina M. Abdel-Rahman	• • • • • • • • • • • • • • • • • • • •
Prof Dr	Abdel-Fattah G. Hashem	

Prof. Dr. Safiya Hassan Ahmed

Head of the Department of Entomology

Faculty of Science, Cairo University

1999

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to prof. Dr. Amina M. Abdel-Rahman, Professor of insect control, Department of Entomology, Faculty of Science, Cairo University, for her supervision, encouragement & her suggestions during the course of this work.

The author also wishes to thank with deep appreciation Prof. Dr. Abdel- Fattah G. Hashem, Prof. of Entomology, Horticulture Insects Res. Department, PPRI, ARC, for his supervision, encouragement, and all his efforts during the course of this work.

In addition, great thanks are also due too my friend Tarek R . Amin, assisst. Res. Insect Physiology Department, PPRI , ARC, for his help, supporting with equipment's and guidance in physiological tests.

Finally, I wish to thank my loving parents for their patience, encouragement and moral support. Special thanks to my wife.

CONTENTS

	Page
I - INTRODUCTION	1
II -REVIEW OF LITERATURE	
A - Mass rearing & Quality Control	6
B - Effect of Radiation	18
C - Enzymes	27
III - MATERIALS & METHODS	
Part 1 - Preliminary tests	
a - Wheat Bran Diets	32
b - Wheat Millfeed diets	34
Part 2 - New reusable bulking agent in the larval diets	37
Part 3 - Improved larval diets	39
Part 4 - New cheap larval diet.	40
Part 5 - Evaluation by competitiveness test	44
Part 6 - Enzymatic analysis	47
IV – RESULTS	
Part - 1 Preliminary tests	
a - Wheat bran diet	53
b - Millfeed diet	61

P	ล	σ	e
T	ч	5	•

Part - 2 New reusable bulking agent in the larval diets	72	
Part - 3 Improving larval diet by adding fruits	75	
Part - 4 New cheap larval diet	81	
Part - 5 Evaluation by competitiveness test	91	
Part - 6 Enzymatic analysis	93	
V - DISCUSSION and conclusion	99	
VI - SUMMARY	106	
VII - REFERENCE	112	
VIII - ARABIC SUMMARY		

LIST OF TABLES

I - Material and Methods tables

Tab	le No.	Page
1	Ingredients of larval diets based on wheat bran	33
2	Ingredients of larval diets based on wheat millfeed	35
3	Ingredients of larval diets based on new bulking agents	
	(artificial sponge & jute)	38
4	Ingredients of larval diets based on wheat bran, jute and	
	artificial sponge, mixed with fresh grinded Guafa	41
5	Ingredients of larval diets based on carrot residues	43
6	Ingredients of larval diets based on different carbohydrate	
	and protein sources to study the enzymatic activity of the	
	desired enzymes	48
IJ	- Results tables	
Pa	art 1 Preliminary tests	
7	Number of pupae per tray reared as larvae on preliminary	
	diets based on wheat bran	54
8	Number of pupae per ml reared as larvae on preliminary	
	diets based on wheat bran	56
9	Pupal weight reared as larvae on preliminary diets based on	
	wheat bran	57

Tabl	le No.	Page
10	Emergence percent of pupae reared as larvae on preliminary	
	diets based on wheat bran	59
11	Sex ratio of adults reared as larvae on preliminary diets	
	based on wheat bran	60
12	Number of pupae per tray reared as larvae on preliminary	
	diets based on wheat millfeed diet	63
13	Number of pupae per ml reared as larvae on preliminary	
	diets based on wheat millfeed	65
14	Weight of pupae reared as larvae on preliminary diets	
	based on wheat millfeed	67
15	Emergence percent of adults reared as larvae on preliminary	
	diets based on wheat millfeed	68
16	Sex ratio of adults reared as larvae on preliminary diets	
	based on wheat millfeed	70
Pa	art 2 New reusable bulking agent in the larval diets	
17	Number of pupae per tray reared on diets based on artificial	
	sponge and jute	73
18	Number of pupae per ml produced by diets based on artificial	
	sponge and jute	73
19	Weight of pupae reared as larvae on diets based on artificial	
	sponge and jute	74

Table No.	Page
20 Emergence percent of adult flies reared as larvae on diets	
based on artificial sponge and jute	74
21 Sex ratio of flies reared as larvae on diets based on artifici	al
sponge and jute	76
Part 3 Improved larval diet by fruit	
22 Number of pupae per tray produced by different diets mixe	ed
with fruit	76
23 Number of pupae per ml produced by different diets mixe	d
with fruit	78
24 Weight of pupae produced by different diets mixed with	
fruit	78
25 Emergence percent of adult flies reared as larvae	
different diets mixed with fruit	80
26 Sex ratio of flies reared as larvae different diets mixed wi	ith
fruit	80
Part 4 Improving larval diet by adding fruit residues	;
27 Number of pupae per tray produced by larval diets based of	n
fruit residues	82

Tabl	e No.	Page
28	Number of pupae per ml produced by larval diets based on	
	fruit residues	82
29	Weight of pupae produced by larval diets based on fruit	
	residues	84
30	Emergence percent of flies produced by larval diets based	
	on fruit residues	84
31	Sex ratio of flies produced by larval diets based on fruit	
	residues	85
Pa	rt 5 Evaluation by Competitiveness test	
32	Competitiveness test	92
Pa	rt 6 Enzymatic analysis	
33	GOT enzyme analysis	94
34	GPT enzyme analysis	94
35	Invertase enzyme analysis	98
36	Trehalase enzyme analysis	98