

COMPARITIVE STUDY BETWEEN EMPIRICAL EQUATIONS OF CRITICAL WIND SPEED FOR CABLE-STAYED BRIDGES

By

Nouran Mamdouh Tmam Nagdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

COMPARITIVE STUDY BETWEEN EMPIRICAL EQUATIONS OF CRITICAL WIND SPEED FOR CABLE-STAYED BRIDGES

By

Nouran Mamdouh Tmam Nagdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Dr. Walid Abd-Elatif Attia

Professor of Structural Analysis and Mechanics Department of Structural Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

COMPARITIVE STUDY BETWEEN EMPIRICAL EQUATIONS OF CRITICAL WIND SPEED FOR CABLE-STAYED BRIDGES

By

Nouran Mamdouh Tmam Nagdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mohammed Ragaee Kotb Badr, Professor of Constructions in Housing & Building National Research Center, External Examiner

Prof. Dr. Ahmed Hassan Amer, Professor of Structural Analysis and Mechanics, Cairo University, Internal Examiner

Prof. Dr. Walid Abd-ELatif Attia, Professor of Structural Analysis and Mechanics, Cairo University, Thesis Advisor

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2016

Engineer's Nouran Mamdouh Tmam Nagdy

Name:

Date of Birth: 5/09/1990 **Nationality:** Egyptian

E-mail: Engnourmamdoh@yahoo.com

Phone: 01017420633

Address: Nasr City-Rabaa aladwea-Cairo, Egypt

Registration01/10/2012Awarding Date:..../..../2016Degree:Master of ScienceDepartment:Structural Engineering

Supervisors:

Prof. Dr. Walid Abd-ELatif Attia, Professor of Structural, Cairo

University, Thesis Advisor

Examiners: Prof. Dr. Walid Abd-Elatif Attia Professor of Structural Cairo

University

Prof. Dr. Ahmed Hassan Amer Professor of Structural Cairo

University

Prof. Dr. Mohammed Ragaee Kotb Badr, Professor of

Constructions in Housing & Building National Research Center

Title of Thesis:

COMPARITIVE STUDY BETWEEN EMPIRICAL EQUATIONS OF CRITICAL WIND SPEED FOR CABLE-STAYED BRIDGES

Key Words:

Cable stayed; Wind Loads; Vortex-Shedding; Flutter analysis; Aerodynamic.

Summary:

The long span cable-stayed bridges are considered as a modern form of the bridges which are both economical and aesthetic. In the past of few decades construction of long-span bridges was used widely in crossing wide water. The study of wind effect is considered main items to design the type of bridges. Therefore, the importance of the wind tunnel test measured the flutter critical wind speed. Some of the researchers concluded from this test some of empirical equations to calculate the flutter wind speed. The main objective of this research is comparing some of equations with each other. These empirical equations applied to the three dimensional finite element analysis of cable-stayed bridges. The conclusion results of the research are compared to the empirical equations with each other by using the frequencies of three bridges model shapes, that was modeled on the SAP program.

ACKNOWLEDGMENTS

I would like to express my most sincere gratitude and appreciation to thesis main advisor, prof. Dr. Walid Abd-Elatif Attia, who had the initial idea for this study and for his guidance, encouragement, and patience throughout the completion my thesis work.

I would also like to thank him for many helpful suggestions for verification to small problems which has mentioned in Thesis and allowing me to understand the missing topics. Thanks for him for reading my thesis and offering me a great deal of important and relevant feedback.

I would also like to thank my Mum, Dad and my sisters Nada and Nagham and my brother Mohammed, who has provided so much love and support. To my family, for being the light, joy, and fuel of my existence and for being my constant inspiration and support. For all I dedicate Thesis. Happy reading!

Finally, and most importantly, I would like to thank ALLAH for always being there for me.

TABLE OF CONTENT

ACKNOWLEDGMENTS	I
TABLE OF CONTENT	III
LIST OF TABLES	VII
LIST OF FIGURES	IX
LIST OF SYMBOLS	XI
ABSTRACT	XIII
CHAPTER (1)	1
INTRODUCTION	1
1.1. Introduction	1
1.2 Clarify the Problem	1
1.3 Objectives and Scope of Work	2
1.4 Thesis Organization	2
CHAPTER (2)	4
LITERATURE REVIEW AND BACKGROUND	4
2.1 Introduction	4
2.2 Cable-stayed bridges History	4
2.3 Cable-Stayed Bridge Concepts.	10
2.3.1 Comparison of Suspension Bridge and Cable-Stayed	12
2.3.2 Cable Stays Arrangement	14
2.3.3 Planes Number	14
2.3.3.1One plane systems	14
2.3.3.2 Two vertical plane system	15
2.3.3.3 Two inclined plane system	16
2.3.4 Cables arrangement	17
a) Harp Pattern (Parallel system)	17
b) Fan Pattern (Intermediate system)	17
c) Radial Pattern (Converging system)	18
d) Asymmetric pattern	18
2.3.5 Spacing and Number of the Cables	19

2.4 Preliminary Design	19
2.4.1 Loads and Forces	19
2.4.2 Wind loads	20
2.5 Comparison of critical wind speed for Stonecutters Bridge	20
2.6 Construction of some bridges	24
2.6.1 The innovation of Stonecutter Bridge in China	24
2.6.1.1 Overview	24
2.6.1.2 Construction of Stonecutter Bridge	24
2.6.2 The innovation of Tatara Bridge in China	27
2.6.2.1 Overview	27
2.6.2.2 Construction of Tatara Bridge	27
2.7 Cable-Stayed Bridges in Egypt	30
2.7.1 The Suez-Canal Bridge	30
2.7.2 The Aswan Bridge	30
CHAPTER (3)	32
EMPIRICAL FORMULA FOR FLUTTER STABILITY ANALYSIS	32
3.1 Introduction:	32
1.2 Theoretical Background	32
1.2.1 Flutter	32
3.2.2 Linear Flutter Analysis – Quasi-steady	34
3.2.3 Linear Flutter Analysis – Unsteady, Pade Approximants	36
3.3.4 Linear Flutter Analysis – U-g method	36
3.3 Criteria for the design of a bridge	39
3.3.1 Static behavior	40
3.3.2 The behavior of dynamic	40
3.4 Study critical velocity for flutter with methods dependent	40
3.4.1 Free Oscillation Procedure	40
3.4.2 Forced Oscillation Procedure	41
3.5 Instability of Aerodynamic	43
3.5.1 Vortex-shedding	44
3.5.2 Flutter	47
3.5.2.1 Stall flutter	10

3.5.2.2 Panel flutter	48
3.6 Empirical Equations	49
3.6.1 Selberg Formula	49
3.6.2 Step By Step analytical procedure method:	49
3.6.3 Rocard's (Frandsen, 1965)	50
3.6.4 Van der put approximate formula:	51
CHAPTER (4)	52
CASE STUDY	52
4.1 Introduction	52
4.2 Case of loading	52
4.3 Structural Modeling of Cable-Stayed Bridges:	52
4.3.1 Main Assumption	54
4.3.2 Estimation of Initial Cable Forces in Cable-Stayed Bridges	54
4.4 Configuration of the Basic Bridges Studied Case	55
4.4.1 Suez Canal Bridge	56
4.4.2 Tatara Bridge	64
4.4.3 Virtual Bridge:	69
4.5 Different frequencies of the three model bridges:	74
4.5.1 Suez Canal model bridge:	74
4.5.2 Tatara model bridge:	75
4.5.3 Virtual model bridge:	76
4.6 Main geometric and dynamic properties of different bridges:	77
CHAPTER (5)	79
DISCUSSION AND RESULTS	
5.1 Introduction	
5.2 Results	79
5.3 Three major cable-stayed bridges	79
5.3.1 Suez Canal Bridge:	79
5.3.1.1 Selberg formula	80
5.3.1.2 Rocard's equation:	81
5.3.1.3 Step-by-step method:	81
5.3.1.4 Van der put approximate formula:	82

5.3.2 Tatara Bridge	84
5.3.2.1 Selberg equation:	84
5.3.2.2 Rocard's equation:	85
5.3.2.3 Step-by-step method:	85
5.3.2.4 Van der put approximate formula:	86
5.3.3 The Virtual Bridge	88
5.3.3.1 Selberg equation:	88
5.3.3.2 Rocard's equation:	89
5.3.3.3 Step-by-step method:	90
5.3.3.4 Vander put approximate formula:	90
5.4 Different cables-stayed bridges	91
5.6 Comparison between equations and each other:	93
CHAPTER (6)	94
CONCLUSIONS AND SUMMARY	94
6.1 Research Summary	94
6.2 Conclusions	95
6.3 Suggestions for Future Work	95
REFERANCE	96

LIST OF TABLES

Table	Page
Table 2-1: The 18 longest cable-stayed bridges	9
Table 2.2: Quantities of steel (Adapted from Gimsing, N.J. 2011)	13
Table 2.3: Results comparing between Stonecutters FE model and other published of	
Table 2.4: Parameters in Van der Put critical wind speed formula	21
Table 2.5: Summarized onset flutter wind speed and critical flutter wind speed	23
Table 2.6: Observation wind data in Hong Kong	23
Table 4.1: Support Conditions of Piers and Towers	58
Table 4.2: Section Properties of the Towers of the Suez Canal Bridge	59
Table 4.3: Section Properties of the Steel Girder of the Suez Canal Bridge	62
Table 4.4: material Properties of the Cables of the Suez Canal Bridge.	63
Table 4.5: Section properties of the Towers of the Tatara Bridge	65
Table 4.6: Shows the Section properties of the Cables of the Tatara Bridge	67
Table 4.7: Material Properties of the Cables of the Tatara Bridge	68
Table 4.8: Section Properties of the Towers of the Virtual Bridge	71
Table 4.9: Material Properties of the Cables of the Virtual Bridge	72
Table 4.10: Initial Cable Forces for the Virtual Bridge	72
Table 4.11:Natural Frequencies of the Suze Canal Bridge Basic Model	74
Table 4.12: Natural Frequencies of the Tatara Bridge Basic Model	75
Table 4.12: Natural Frequencies of the Virtual Bridge Basic Model	76
Table 4.13: Main geometric and dynamic properties of the considered cable-stayed bridges	
Table 4.14: Critical wind speed for Stonecutters from wind tunnel experiment	78
Table 5.1: Natural Frequencies of the Suez Canal Bridge Basic Model	80
Table 5.2: Comparison for the same bridge between different models for Selberg equation	81
Table 5.3: Comparison for the same bridge between different models for Rocard's equation	81
Table 5.3: Comparison for the same bridge between different models for Step-by-step method	82
Table 5.4: Comparison for the same bridge between different models for Van der put approximate formula	82
Table 5 5: Natural Frequencies of Tatara Bridge Basic Model	84

Table 5.6: Comparison for Tatara bridge between different models for Selberg equation	85
Table 5.7: Comparison for Tatara bridge between different models for Rocard's equation	85
Table 5.8: Comparison for Tatara bridge between different models for Step-by-step method	86
Table 5.9: Comparison for Tatara bridge between different models for Van der put approximate formula	86
Table 5.10:Natural Frequencies of Virtual Bridge Basic Model	88
Table 5.11: Comparison for Virtual bridge between different models for Selberg equation	89
Table 5.12: Comparison for Virtual bridge between different models for Rocard's equation	89
Table 5.13: Comparison for the same bridge between different models for Step-by-step method	90
Table 5.14: Comparison for the same bridge between different models for Vander put approximate formula	90
Table 5.15: Comparison between empirical equations that applied on five cable-stay bridges	
Table 5.16: Comparing between the highest value and critical wind speed of wind tunnel test	92
Table 5.17: Relation between Selberg equation and other equations	93

LIST OF FIGURES

Figure	Page
Figure 2.1: The Albert Bridge in London	5
Figure 2.2: The Strömsund Bridge	5
Figure 2.3:The Köhlbrand Bridge	6
Figure 2.4: The Maracaibo Bridge	7
Figure 2.5: The Alex Fraser Bridge during its construction	8
Figure 2.6: The Sutong Yangtze River Bridge	9
Figure 2.7: Structural Behavior of Suspension & Cable-Stayed Bridge	12
Figure 2.8: One plane system	14
Figure 2.9: Two vertical plane's system	15
Figure 2.10: Two inclined plane system	16
Figure 2.11: Harp Pattern Arrangement	17
Figure 2.12: Fan Pattern Arrangement	17
Figure 2.14: Asymmetric Pattern Arrangement	18
Figure 2.15: Summarized onset flutter wind speed and critical flutter wind speed.	23
Figure 2.16: Innovation of Stonecutters Cable Stayed Bridge in China	25
Figure 2.17: Construction of Stonecutter Cable Stayed Bridge	26
Figure 2.18: Innovation of Tatara Cable Stayed Bridge in China	28
Figure 2.19: Construction of Tatara Cable Stayed Bridge	29
Figure 2.20: Schematic Representation of Bridges; (a) Suez-Canal Bridge, (b) As Bridger	
Figure 3.1: Tacoma Narrows Bridge collapse (a) twisting motion from collapse, (represents spiral flow of separating the downward	
Figure 3.2: Typical section in flutter analysis	33
Figure 3.3: (a) Angle of attack due to pitching, (b) Angle of attack due to plungin	g34
Figure 3.4: Graphics relative bending moment because one of the 2nd vibration n	
Figure 3.5: during lock-in Qualitative trend of vortex shedding frequency with wivelocity (Simiu and Scanlan, 1996)	
Figure 3.6 (a) - (d) The vortex shedding from Selvam, R. P. (2001) showing	46
flow past a sharp edged plate	46
Figure 3.7: (a) – (d) Flow past a Circular cylinder	47
Figure 4.1: Three-Dimensional Finite Element Model of Suez Canal Bridge	57

Figure 4.2:Towers of Suez Canal Bridge
Figure 4.3: Steel Box Girder of Suez Canal Bridge
Figure 4.4: Longitudinal Layout of Suez Canal Bridge61
Figure 4.5: Three-Dimentional Model of Tatara Bridge
Figure 4.6: Towers of Tatara Bridge65
Figure 4.7: Box Girder of Tatara Bridge
Figure 4.8:Longitudinal Layout of Tatara Bridge
Figure 4.9: Three-dimensional Finite Element Model of the Virtual Bridge69
Figure 4.10:Tower and Girder of the Virtual Bridge70
Figure 4.11: Longitudinal Layout of the Virtual Bridge
Figure 4.12: Three-dimensional Finite Element Model Suez Canal model bridge74
Figure 4.13: Three-dimensional Finite Element Model Tatara model bridge75
Figure 4.14: Three-dimensional Finite Element Model Virtual model bridge76
Figure 5.1: Comparison between the different equations by three modes83
Figure 5.2: Comparison between four equations of critical wind velocity and modes87
Figure 5.3: Comparison between four equations of critical wind velocity and modes91
Figure 5.4: Comparison between four equations of critical wind velocity for five bridges

LIST OF SYMBOLS

Angle of attack [deg] α β Pitch angle [deg] ζ Damping ratio [-] θ Torsional angle [deg] κ The reduced frequency stiffness [-] λ Eigenvalue ρ Air density [kg/m3] ρ Density of the blade [kg/m3] Azimuth angle [deg] φ Ω Rotational speed [rad/s] Modal frequency [Hz] ω A Area [m2] E Young modulus of elasticity [Pa] F The cable force The heaving (Vertical of Flexural) natural characteristic frequency $F_{\eta o}, F_B$ F_{00} , F_{T} The torsional natural characteristic frequency G Shear modulus [Pa] h Flapwise deflection [m] I Moment of inertia [m4] J Polar moment of inertia [m4] K Stiffness matrix k Reduced frequency [-] ki Stiffness coefficient [N/m] L Aerodynamic lift [N] L Lagrangian operator M Mass matrix M aerodynamic moment [Nm]

m Mass [kg]

q Applied load per unit length [N/m]

t Time [s]

u Node deformation vector

W Relative wind speed [m/s]