IMPACT OF SOME HEAT RESISTANCE GENES ON QUANTITATIVE TRAITS IN CHICKEN USING MODERN GENETIC TECHNIQUES

By

OSAMA KORNAH ABOU-EMERA EMARA

B.Sc. Agric. Sci. (Poultry Production), Ain Shams Univ. (2003) M.Sc. Agric. Sci. (Poultry Breeding), Ain Shams Univ. (2008)

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Poultry Breeding)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

IMPACT OF SOME HEAT RESISTANCE GENES ON QUANTITATIVE TRAITS IN CHICKEN USING MODERN GENETIC TECHNIQUES

By

OSAMA KORNAH ABOU-EMERA EMARA

B.Sc. Agric. Sci. (Poultry Production), Ain Shams Univ. (2003) M.Sc. Agric. Sci. (Poultry Breeding), Ain Shams Univ. (2008)

This thesis for Ph.D. degree has been approved by:
Dr. Ensaf Ahmed Mohamed El-Full. Prof. of Poultry Breeding, Faculty of Agriculture, Fayoum University.
Dr. Ali Zein El-Dein Hassan. Prof. Emeritus of Poultry Breeding, Faculty of Agriculture, Ain Sham University.
Dr. Ahmed Galal El-Sayed Gad
Dr. Usama Mohamed Ali
Date of Examination: / /

IMPACT OF SOME HEAT RESISTANCE GENES ON QUANTITATIVE TRAITS IN CHICKEN USING MODERN GENETIC TECHNIQUES

By

OSAMA KORNAH ABOU-EMERA EMARA

B.Sc. Agric. Sci. (Poultry Production), Ain Shams Univ. (2003) M.Sc. Agric. Sci. (Poultry Breeding), Ain Shams Univ. (2008)

Under the supervision of:

Dr. Usama Mohamed Ali

Prof. Emeritus of Poultry Breeding, Poultry Production Dept., Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Ahmed Galal El-Sayed

Prof. of Poultry Breeding, Poultry Production Dept., Faculty of Agriculture, Ain Shams University.

Dr. Salah El-Dein Abdel Rahman El-Safty

Prof. of Poultry Breeding, Poultry Production Dept., Faculty of Agriculture, Ain Shams University.

ABSTRACT

Osama Kornah Abou-Emera Emara. Impact of Some Heat Resistance Genes on Quantitative Traits in Chicken Using Modern Genetics techniques. Unpublished Ph.D. Thesis, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2017.

According to morphological appearance of feather coverage, a total number of 368 birds, representing three genotypes (heterozygous naked neck (Nanaff), heterozygous frizzle (nanaFf) and normally feathered (nanaff) genotypes) were classified. At sexual maturity, the chickens were individually housed in wire cages located in semi-closed house. Adult body weight, age at sexual maturity, egg number and egg weight were recorded for each genotype. At 30 weeks of age, egg quality characteristics were examined. Forty birds were randomly assigned (eight birds/genotype) to assess cell mediated immunity through PHA-P injection in wattles. Blood samples were collected from the wing vein. The DNA was purified by successive extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and chloroform:isoamyl alcohol (24:1), respectively. A total of 20 microsatellite markers were selected based on the degree of polymorphism reported in the literature. The PCR amplification was carried out in 25 µL reaction volumes, gels were stained in ethidium bromide and DNA bands were visualized on UV-transilluminator. Data of SSR analyses were scored on the basis of the presence or absence of the amplified products for each primer. The similarity coefficients were then used to construct a dendrogram by Unweighted Pair-Group Method with Arithmetical Average (UPGMA).

The productive results revealed that the introducing Na and F genes in chicken breeds raised under hot weather significantly improved most of egg production and eggshell quality traits. Moreover, significantly higher cell mediated response was found in Na and F genotypes particularly, in homozygous manner compared to normally feathered genotype. A remarkable extensive genetic diversity was seen among the studied genotypes. Genetic distance as a pair-wise comparison of different genotype

ABSTRACT

ranged from 0.14 (NaNa-Nana) to 0.41 (Nana-FF). Both Na genotypes and F sibs located in a separate sub-cluster resulted in a clear distinction between the two major genes. The population structure of these genotype chickens could be explained by their morphological shape, feather distribution and structure, which suggested the presence of independent cluster join naked neck and normally feather birds, which differentiated from each other according to the distribution percentage of the plumage of the body, deviated with a wide range in a separate cluster from F individuals (FF and Ff) which differed in feather structure. Inferred information will provide valuable notion to the genetic intercourse of heat resistance genotypes. The high genetic diversity in heat resistance genotypes compared to normally feather ones is in agreement with great phenotypic variation of these birds. The evaluation of genetic diversity among chicken genotypes carrying Na and F genes based on the studied microsatellite markers was efficient and gained consistent results.

Key words: Microsatellites, genetic diversity, genetic markers, biodiversity, major genes, naked neck gene (Na), F gene (F), genetic cluster.

ACKNOWLEDGMENTS

To who belongs majesty, the great almighty, possessor of stature and oneness, **ALLAH**, without divine supreme being, nothing will be.

I would like to initiate display profuse thank to the members of my supervising committee, **Prof. Dr. U. M. Ali** (Principal Supervisor), Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his revising the manuscript, beneficial counsel, powerful sustainment, and permanent encouragement.

My gratitude goes to **Prof. Dr. A. Galal**, Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University. For the continuous support, morale supporting with advice, guidance and rectification. Efforts that exerted in practical side following, and thesis revision, which unless this study not be able to bring to light.

I am plentiful beholden to **Dr. Salah A. El-Safty,** Professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University on his efforts that exerted in statistical analysis auditing and thesis revision, who not stingy with support or spare any time and do the best to complete this thesis in the final shape.

I am plentiful grateful to **Prof. Dr. Essam Fouad Abdel Hamid**, Professor of Poultry Husbandry, Poultry Breeding Research Department, Animal Production Research Center, Agriculture Research Center, and **Prof. Dr. M. M. Fathi**, Professor of Poultry Breeding and Genetics, Faculty of Agriculture, Ain Shams University, for beneficial guidance, powerful sustainment, technical support and permanent encouragement. Great gratitude to **Prof. Dr. M. I. Motawei**, Department of Plant Production and Protection, **Dr. M. F. El-Zarei**, Department of Animal Production and Breeding,

College of Agriculture and Veterinary Medicine, Qassim University, for their support throughout all DNA extraction and genotyping phases.

My appreciation goes to **Prof. Dr. M. F. Amer, Prof. Dr. H. Ayoub, Prof. Dr. A. Zein El-Dein** and **Prof. Dr. A. H. El-Attar**, and all poultry breeding board, Poultry Production Department, Faculty of Agriculture, Ain Shams University.

My project would not have been possible without the help and support of my **Family**, **Colleagues** and **Friends**.

My prayers goes to my **Father** and **Mother** souls, whom lately died. Asking God to gather us again with them in peace.

LIST OF CONTENTS	Page
LIST OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	iv
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Experimental chickens	3
2. Body weights	5
3. Sexual maturity measurements	7
4. Egg Production measurements.	13
5. Egg quality measurements	17
6. Feed consumption and feed conversion ratio	24
7. Complete blood count (CBC)	27
8. Blood plasma analysis	29
9. Immunogenetic profile	30
9.1. Relative weights of lymphoid organs	33
9.2. Cell mediated immune response.	35
10. Polymorphism of markers	38
11. Genotype clustering	39
MATERIALS AND METHODS	40
1. Productive, physiological and immunological parameters	40
1.1. Flock husbandry and sampling	40
1.2. Measurements and observations	41
1.2.1. Body weights	41
1.2.2. Sexual maturity measurements	41
1.2.3. Egg Production measurements	43
1.2.4. Egg quality measurements	43
1.2.5. Feed consumption and feed conversion ratio	46
1.2.6. Complete blood count (CBC)	47
1.2.7. Blood plasma analysis	48
1.2.8. Immunogenetic profile	48

LIST OF CONTENTS	Page
1.2.8.1. Relative weights of lymphoid organs	48
1.2.8.2. Cell mediated immune response	48
2. Microsatellite markers analysis	48
2.1. Blood and DNA preparation	48
2.2. Microsatellite genotyping	49
2.3. Simple Sequence Repeats Assay (SSR)	49
3. Statistical analysis	52
3.1. Productive, physiological and immunological data analysis	52
3.2. Genetic data analysis	52
3.2.1 Single sequence repeats analysis	52
3.2.2 Cluster analysis	52
RESULTS AND DISCUSSION	53
1. Body weights	53
2. Sexual maturity measurements	53
3. Egg Production measurements	55
4. Egg quality measurements	56
5. Feed consumption and feed conversion ratio	57
6. Complete blood count (CBC)	60
7. Blood plasma analysis	61
8. Immunogenetic profile	62
8.1. Relative weights of lymphoid organs	62
8.2. Cell mediated immune response	63
9. Polymorphism of markers	64
10. Genotype clustering	75
SUMMARY AND CONCLUSION	82
REFERENCES	87
APPENDIX	111
LIST OF ABBREVIATIONS	121
ARABIC SUMMARY	Í

Table No	LIST OF TABLES	Page
1.	The calculated chemical analysis of the experimental diets.	40
2.	Description of 20 microsatellite markers used in this study.	51
3.	Body weights throughout brooding period	53
4.	Sexual maturity measurements for studied genotypes.	54
5.	Means of egg production (number, egg mass and egg weight) traits for studied genotypes for 180 days of production.	56
6.	Egg quality measurements for studied genotypes.	57
7.	Weekly feed consumption, egg mass & feed conversion ratio for experimented genotypes (3birds/cage).	59
8.	Complete Blood count parameters for different genotypes.	60
9.	Blood protein, albumin and globulin levels of studied genotypes.	62
10.	Relative weights of lymphoid organs for studied genotypes.	62
11.	Cell mediated immune response against injection with phytohemagglutinin-P (PHA-P).	64
12.	Alleles number per locus and polymorphic percentage for the microsatellite markers used in the study.	68
13.	Alleles number/ microsatellite markers and polymorphic percentage for the different genotypes used in the study.	69
14.	Number of alleles of 20 studied markers per locus.	71
15.	Maximum number of alleles/marker differentiated into its status (monomorphic/ polymorphic) and its percentage for the studied genotypes.	73
16.	Total number of alleles for studied markers for the specific genotype.	74
17.	Genetic distance matrix of studied genotypes.	76

No.	LIST OF FIGURES	Page
1.	High and low ambient temperatures at maturation and onset of laying period.	41
2.	Body measurements at sexual maturity for studied genotypes.	55
3.	Cell mediated immunity (PHA-P injection) for studied genotypes.	65
4.	Phylogenetic tree dendrogram showing coefficient of similarity of tested genotypes.	75