USING OF SOME ENVIRONMENTALLY SAFE TREATMENTS TO IMPROVE THE STORABILITY OF ORANGE FRUITS

By

LAYLA IBRAHIM TABBARA

B.Sc. Agric.Sc. (Horticulture), Damascus University 2000M.Sc. Agric. Sci. Damascus University 2011

A thesis submitted in partial fulfillment
Of
The requirements for the degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

USING OF SOME ENVIRONMENTALLY SAFE TREATMENTS TO IMPROVE THE STORABILITY OF ORANGE FRUITS

LAYLA IBRAHIM TABBARA

B.Sc. Agric.Sc. (Horticulture), Damascus University 2000M.Sc. Agric. Sci. Damascus University, 2011

This Thesis for Ph. D. Degree has been approved by: Dr. Mohammad Diab El-Deeb Prof. Emeritus of Pomology, Faculty of Enviormental Agriculture of Sciences, Arish University Dr. Hasan Mohammad Fadel El-Wakil Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University Dr. Alla El-Dein Zaki Bondok Prof. Emeritus of Pomology, Faculty of Agriculture, Ain Shams University Dr. Nazmy Abd El-Hamed Abd El- Ghaney Prof. of Pomology, Faculty of Agriculture, Ain Shams University

Date of Examination: 13 / 5 /2017

USING OF SOME ENVIRONMENTALLY SAFE TREATMENTS TO IMPROVE THE STORABILITY OF ORANGE FRUITS

By LAYLA IBRAHIM TABBARA

B.Sc. Agric.Sc. (Horticulture), Damascus Univ. 2000M.Sc. Agric. Sci. Damascus University 2011

Under the supervision of:

Dr. Nazmy Abd El-Hamed Abd El-Ghaney

Prof. of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principle Supervisor)

Dr. Alla El-Dein Zaki Bondok

Prof. Emeritus of Pomology, Department of Horticulture, Faculty of Agriculture, Ain Shams University

ABSTRACT

Layla Ibrahim Tabbara: Studies on Using of some Environmentally Safe Treatments to Improve the Storability of Orange Fruits Unpublished Ph.D. thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2017.

This investigation was carried out during two successive seasons 2013 and 2014 on fruits of two orange cultivars, Navel Orange (Citrus sinensis) and Valencia orange. The fruit samples were collected from orange orchard belonging to Wadi Elnetron by randomly from all over the orchard which has clay loam soil, the trees were irrigated through far row (surface) irrigation system. An experiment was conducted to evaluate the influence of some environmentally safe treatments to improve the storability of Navel orange (citrus sinensis) and Valencia fruits during 2013 and 2014 seasons, Jojoba oil (1,3,5)%, castor oil (0.5, 1,2)%, yeast(1,2,3)%, seaweed(1,2,3)%, hot water (45° C and commercial wax were used for proposed study, After the application of the treatments on the fruits, fruits were stored at a temperature of 5 ° C and 95% of relative humidity for 60 days, it was determine the physical characteristics (damage cold-loss gravimetric - loss injury fungi - juice ratio-the thickness of the crust) and chemical properties (ratio of ascorbic acidtotal soluble solids - total acids -TSS/TA - total phenols - total flavones sensory evaluation "the taste, color, freshness, flavor") after that fruits were placed at room temperature for 7 days in order to do the sensory evaluation. Results indicated that, castor oil (2 and 1)% and jojoba oil 5% weight loss%, chilling injury%,decay%, ascorbic reduced deterioration, deterioration peel thickness, deterioration total acids, phenols increase and increased juice ratio, total soluble solids, TSS/TA rate, flavonoids increase with significant differences compared to control, the above mentioned treatments exhibited the highest degree of evaluating sensoryin terms of color, taste, freshness and flavor in the two studied seasons and for two studied cultivars.

So the results show that, coating orange fruits with castor oil (1-2)% and jojoba oil (5)% the most effective in improve the storability of orange fruits [Navel Orange (*Citrus sinensis*) and Valencia orange].

Key Wards: Castor oil, Commercial Wax, Evaluating sensory, Jojoba oil, Navel orange, Quality fruit, Seaweed, Valencia, Yeast.

ACKNOWLEDGEMENTS

First, ultimate thanks are due to **ALLAH** who without his aid this work couldn't have been done.

I wish to express my deep gratitude and sincere appreciation to **Prof. Dr. Nazmy Abd El-Hamed Abd El- Ghaney**, Professor of Pomology, Department of Horticulture, vice president Ain Shams University, Cairo - Egypt. For his diligence, supervision, continuous guidance, sincere help and providing facilities throughout the study.

Deep gratitude and sincere appreciation to **Dr. Alla El-Dein Zaki Bondok** Professor of Pomology, Department of Horticulture, Ain Shams University, Cairo - Egypt. For his supervision, kind support, useful help, sincere advice and constructive suggestions are cordially appreciated.

Sincerely acknowledge and deeply thank **Dr. Ashraf Mahmoud Hasan EL-Kriemy**, for his diligence, supervision, continuous guidance and valuable discussions throughout this work.

Sincerely acknowledge and deeply thank **Dr. Bayan M. Muzher** GCSAR. Horticulture Department-Pome and grapevine Division-Syria, for his diligence, continuous guidance and valuable discussions throughout this work, and every my high education stage.

Sincerely acknowledge and deeply thank **Dr. Mohamed M. Abou-Setta**, research leader - plant protection research institute agriculture research center - Cairo-Egypt, for his help me in the statistical analysis of this work.

Sincerely acknowledge and deeply thank **Dr. Samah Nasr**, Lecturer of higher institute for Agricultural Cooperation, Shubra El-Khaima, Cairo-Egypt. For her technical help, help me in the statistical analysis and supplying materials in order to perform this work

Finally thanks also are to my family, my friends, for their kindly help.

CONTESNTS

LIST OF TABLES	V
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Physiological and chemical characteristics of the fruits of	5
oranges	
2. physiological and chemical changes of orange fruit during	6
storag	
3. Use coating to increase the Storability of orange fruit	8
4. Effect of Some of materials used in edible coating	10
4-1. Effect of Commercial Wax on Physical & chemical	10
properties under storage cold of citrus fruit	11
4-1.1. Effect of wax on Physical properties	11
4-1.2. Effect of wax on Chemical properties	14
4-2. Effect of Castor oil and jojoba oil and other Essential oils	17
on Physical & chemical properties under storage cold of	
citrus fruit	
4-2.1. Effect of Castor oil and jojoba oil and other	19
Essential oils on Physical properties	
4-2.2. Effect of Castrol oil and jojoba oil and other	23
Essential oils on Chemical properties	
4-3. Effect of hot water on Physical & chemical properties	25
under storage cold of citrus fruit	
4-3.1. Effect of hot water on Physical properties	26
4-3.2. Effect of hot water on Chemical properties	27
4-4. Effect of Seaweed on Physical & chemical properties	27
under storage cold of citrus fruit	
4-4.1. Effect of Seaweed on Physical properties	28
4-4.2. Effect of Seaweed on Chemical properties	28
4-1. Effect of yeast on Physical & chemical properties under	29

	storag	ge cold of citrus fruit		
	4-1.1.	Effect of yeast on Physical properties	30	
	4-1.2.	Effect of yeast on Chemical properties	31	
Materials and methods				
1-	Plant	32		
2-	Metho	ods	32	
3-	Physic	cal & chemical properties	33	
	3-1.	Chilling injury scale	33	
	3-2.	Fruit weight loss	34	
	3-3.	Fruit decay	34	
	3-4.	Juice	34	
	3-5.	Peel thickness	34	
	3-6.	Ascorbic acid content	34	
	3-7.	TSS	34	
	3-8.	TA	35	
	3-9.	TSS/TA	35	
	3-10.	Total Phenolic Content	35	
	3-11.	Total Flavonoid Content	35	
4- Se	ensory a	analysis	35	
5- St	atistica	ıl analysis	36	
RESU	ILT AN	ND DISCUSSION	37	
1-	Chilli	ing injury	37	
	1-1.	Navel orange	37	
	1-2.	Valencia	41	
2-	weigh	t loss percentage	46	
	2-1.	Navel orange	46	
	2-2.	Valencia	50	
3-	decay	percentage	55	
	3-1.	Navel orange	55	
	3-2.	Valencia	58	
4-	juice%	%	63	
	4-1	Navel orange	63	

	4-2.	Valencia	67
5-	peel t	hickness	72
	5-1.	Navel orange	72
	5-2.	Valencia	75
6-	ascor	bic acid	80
	6-1.	Navel orange	80
	6-2.	Valencia	84
7-	TSS		90
	7-1.	Navel orange	90
	7-2.	Valencia	94
8-	TA		99
	8-1.	Navel orange	99
9-	TSS/1	$\Gamma {f A}$	107
	9-1.	Navel orange	107
	9-2.	Valencia	111
10-	The t	otal phenols(mg\g fresh weight)andTotal flavonoid	116
co	ntent (ug\gfresh weight)	
	10-1.	The total phenols(mg\g fresh weight)	116
		10-1-1. Navel orange	116
		10-1-2. Valencia	119
	10-2.	Total flavonoid content (µg\gfresh weight)	123
		10-1-3. Navel orange	123
		10-1-4. Valencia	127
11-	Senso	ry evaluation	131
	11-1.	Taste	131
		11-1-1. Navel orange	131
		11-1-2. Valencia	132
	11-2.	color	134
		11-2-1. Navel orange	134
		11-2-2. Valencia	135
	11-3.	Freshness	137
		11-1-3. Navel orange	137

	11-1-4. Valencia	138
11-4.	flavor	139
	11-2-1. Navel orange	139
	11-2-3. Valencia	140
SUMMARY	AND DISCUSSION	146
REFERENCES		161
الملخص العربي		

LIST OF TABLE

1.	Table (1): Effect of some environmentally safe treatments before	38
	storage on Chilling injury% on Navel orange fruits, during 2013-	
	2014 seasons	
2.	Table (2): Effect of some environmentallysafe treatmentsbefore	41
	storage on Chilling injury% on valencia orange fruits, during	
	2013-2014 seasons	
3.	Table (3): Effect of some environmentally safe treatments before	48
	storage on Weight loss% on Navel orange fruits, during 2013-	
	2014 seasons	
4.	Table (4): Effect of some environmentally safe treatments before	52
	storage on Weight loss% on valencia orange fruits, during 2013-	
	2014 seasons	
5.	Table (5): Effect of some environmentally safe treatments before	56
	storage on decay% on Navel orange fruits, during 2013-2014	
	seasons	
6.	Table (6): Effect of some environmentally safe treatments before	59
	storage on decay% on valencia orange fruits, during 2013-2014	
	seasons	
7.	Table (7): Effect of some environmentally safe treatments before	46
	storage on juice% in Navel orange fruits, during 2013-2014	
	seasons	
8.	Table (8): Effect of some environmentally safe treatments before	69
	storage on juice% in valencia orange fruits, during 2013-2014	
	seasons	
9.	Table (9): Effect of some environmentally safe treatments before	74
	storage on peel Thickness on Navel orange fruits, during 2013-	
	2014 seasons	
10	O.Table (10): Effect of some environmentallysafe treatments before	77
	storage on peel Thickness on valencia orange fruits, during 2013-	
	2014 seasons	
11	. Table (11): Effect of some environmentally safe treatments	82

before torage on ascorbic acid content in Navel orange fruits,	
during 2013-2014 seasons	
12. Table (12): Effect of some environmentallysafe treatmentsbefore	87
storage on ascorbic acid content in valencia orange fruits, during	
2013-2014 easons	
13. Table (13): effect of some environmentally safe treatments	92
before torage on TSS% in Navel orange fruits, during 2013-2014	
seasons	
14. Table (14): effect of some environmentallysafe treatmentsbefore	95
storage on TSS% in valencia orangefruits, during 2013-2014	
seasons seasons	
15. Table (15): effect of some environmentallysafe treatmentsbefore	100
storage on Titratable Acidity% in Navel orange fruits, during	
2013-2014 seasons	
16. Table (16): effect of some environmentally safe treatments	104
before storage on Titratable Acidity% in valencia orange fruits,	
during 2013-2014 seasons	
17. Table (17): Effect of some environmentally safe treatments	109
before storage on TSS/TA in Navel orange fruits, during 2013-	
2014 seasons	
18. Table (18): Effect of some environmentally safe treatments	112
before torage on TSS/TA in valencia orange fruits, during 2013-	
2014 seasons	
19. Table (19): effect of some environmentally safe treatments	117
before storage on total phenols (mg / g fresh weight) in Navel	
orange fruits, during 2013-2014 seasons	
20. Table (20): effect of some environmentally safe treatments	120
before storage on Total phenols (mg / g fresh weight) in valencia	
orange fruits, during 2013-2014 seasons	
21. Table (21): effect of some environmentally safe treatments	125
before storage on total flavonoid content (μg / g fresh weight) in	
Navel orange fruits, during 2013-2014 seasons	

- 22. Table (22): effect of some environmentally safe treatments 128 before storage on total flavonoid content (μ g / g fresh weight) in valencia orange fruits, during 2013-2014 seasons
- 23. Table(23):Effect of some environmentally safe treatments before storage on sensory evaluation after 60 d of storage on Navel orange fruits,2013-2014seasons
- 24. Table(24):Effect of some environmentally safe treatments before storage on sensory evaluation after60d of storage on valencia fruits,during2013-2014seasons

INTRODUCTION

Citrus is a genus of flowering trees and shrubs which belongs to Rutaceae family, this genus includes the most important crops (species) like oranges, lemons, grapefruit, pomelo and limes. The most researchs indicates that Australia is the origin of Citrus, in addition to New Caledonia and New Guinea (Liu et al., 2012). Some researchers believe that the origin is in the part of Southeast Asia bordered by Northeast India, Burma (Myanmar) and the Yunnan province of China were some commercial species such as oranges, mandarins, and lemons originated (Gmitter and Hu., 1990). Citrus is considered as the most common popular fruits in the world and it takes second or third position after grapevines and apples (FAO, 2011), Brazil's production is forecast up a whopping 27 percent to 18.2 million metric tons based on expected higher yields due to favorable weather resulting in good bloom and fruit set. Brazil is by far the largest citrus producing country followed by China, European Union, the United States, Mexico, Egypt, Turkey and South Africa (USDA, 2017). Citrus is a major export produce of Egypt. The total cultivated area for orange is about 133236 ha (333090 feddan), and total production is estimated at 2750000 ton/year (GAIN, 2015). Navel orange (citrus sinensis) & Valencia are the most important citrus fruits in Egypt which are available during winter. Under Egyptian conditions there are common practices to store mature Navel orange fruits& Valencia until the suitable time for marketing(Abdel Wahab and **Rashid**, 2012). Washington navel orange fruits (citrus sinensis) & Valencia are non climactric, with persistently low respiration and ethylene production rates (Kader and Arpaia, 2002). Also, Due to their higher water content and nutrient composition, citrus fruit is very susceptible to infection by microbial pathogens during the period between harvest and consumption (Tripathi and Dubey, 2003), pathological physiological diseases cause a considerable losses of citrus fruit during storage and transportation. A new approach to the control of postharvest pathogens, while maintaining fruit quality, has been implemented by the application of essential oil amended coatings to citrus. This approach eliminates the need for synthetic fungicides, thereby complying with consumer preferences, organic requirements and reducing environmental pollution, excellent disease control was achieved with the amended coatings, while measured quality parameters indicated that overall fruit quality was maintained. Moreover, moisture loss was decreased significantly in fruit treated with essential oil enriched coatings (Solgi and Ghorbanpour, 2014). Essential oils are volatile, natural, complex compounds characterized by a strong odour and are formed by aromatic plants as secondary metabolites. (EOs) ethereal oils are also aromatic oily liquids obtained by steam or hydro-distillation from plant materials such as flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits and roots (Solgi and Ghorbanpour, 2014). It is well known that in the East began the history of essential oils; for the process of distillation the technical basis of the essential oil industry was conceived and first employed in the Orient, especially in Egypt, Persia and India. As in many other fields of human endeavor, As usual "The sun rises from the East".

Kamel, (2014) found that treating Valencia orange fruits by immersing it in seaweed extract at 1% was maintained fruit quality longer time comparing to Imazalil and control treatments. Tarabihn and El-Metwally, (2014) found that use jojoba oil (0.1%) on Washington Navel orange fruits decreased weight losses percentage, fruit decay, total losses in fruit, titratable acidity and ascorbic acid oxidase. El-Badawy et al., (2012) reported in their study on the efficacy of propolis and wax coatings in improving fruit quality of "Washington" navel orange under cold storage that the lowest values of weight loss percentage, decay percentage and respiration rate (mg CO₂ /kg fruits/hr) as well as the best results of shelf life, titratable acidity and ascorbic acid (mg/100 ml juice) were gained by wax treatment compared with control. Sallam et al., (2012) found that the use of yeast on orange tree as biocontrol of green mold decreased fruit weight loss and the undesirable fruits percentage during cooling period (5° C) for nine weeks compared with control.