

A TRUST REGION APPROACH WITH MULTIVARIATE PADÉ MODEL FOR THE OPTIMIZATION OF REGULAR AND FRACTIONAL ORDER CIRCUITS

By

Shaimaa Ebid Kamel Ebid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A TRUST REGION APPROACH WITH MULTIVARIATE PADÉ MODEL FOR THE OPTIMIZATION OF REGULAR AND FRACTIONAL ORDER CIRCUITS

By Shaimaa Ebid Kamel Ebid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

Under the Supervision of

Prof. Dr. Hany L. Abdel-Malek

Dr. Ahmed S. A. Mohamed

Professor of Engineering Mathematics Engineering Mathematics Department Faculty of Engineering, Cairo University Assistant Professor Engineering Mathematics Department Faculty of Engineering, Cairo University

A TRUST REGION APPROACH WITH MULTIVARIATE PADÉ MODEL FOR THE OPTIMIZATION OF REGULAR AND FRACTIONAL ORDER CIRCUITS

By Shaimaa Ebid Kamel Ebid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Engineering Mathematics

Approved by the Examining Committee

Prof. Dr. Hany L. Abdel-Malek, Thesis Main Advisor

Prof. Dr. Mohamed F. Abu-Elyazeed, Internal Examiner

Prof. Dr. Hassanein H. Amer, External Examiner Electronics and Electriacal communications Department Faculty of Engineering, American University in Cairo (AUC), Cairo, Egypt **Engineer's Name:** Shaimaa Ebid Kamel Ebid

Date of Birth: 26/09/1990 **Nationality:** Egyptian

E-mail: Eng_shaimaaebid@yahoo.com

Phone: 012-85429070

Address:GizaRegistration Date:1/10/2013Awarding Date:.../.../2016Degree:Master of Science

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Dr. Hany L. Abdel-Malek Dr. Ahmed S. A. Mohamed

Examiners: Porf. Dr. Hany. L. Abdel-Malek(Thesis main advisor)

Prof. Dr. Mohamed F. Abu-Elyazeed(Internal examiner)

Prof. Dr. Hassanein H. Amer (External examiner)

Professor at Electronics and Electriacal communications

Department

Faculty of Engineering, American University in Cairo

(AUC), Cairo, Egypt.

Title of Thesis:

A Trust Region Approach with Multivariate Padé Model for the Optimization of Regular and Fractional Order Circuits

Key Words:

Padé model; Trust region optimization; Sensitivity analysis; Yield optimization; Fractional order circuits

Summary:

A new model based on Padé approximation for trust region optimization is proposed, tested and compared with the commonly used quadratic model.

Sensitivity of output voltage is derived using a matrix approach. This approach allows getting the expressions for the output voltage sensitivity to fractional order powers. Yield is maximized using the proposed derivative free optimization method (DFO) with a reduced computational effort. A starting minimax point using gradient optimization technique reduces the required number of yield evaluations to achieve the optimum.

Acknowledgments

All praise is due to Allah.

I would like to express my deep gratefulness to my supervisors Prof. Hany L. Abdel-Malek and Dr. Ahmed S. A. Mohamed for their guidance, supervision and excellent advice throughout the work of this thesis.

I want to express as well my appreciation to all my colleagues for their encouragement. Special thanks to Eng. Wafaa Saber, Eng. Mohamed Fouda, Eng. Ahmed El-Sayed and Eng. Mahmoud Ayad.

Table of Contents

ACKNO	WLEDGMENTS	I
TABLE (OF CONTENTS	II
LIST OF	TABLES	IIV
LIST OF	FIGURES	V
ABSTRA	ACT	X
CHAPTI	ER 1: INTRODUCTION	1
1.1.	DERIVATIVE FREE OPTIMIZATION METHODS	1
1.2.	MOTIVATION	2
1.3.	ORGANIZATION OF THE THESIS	3
СНАРТІ	ER 2 : TRUST REGION OPTIMIZATION	4
2.1.	Introduction	4
2.2.	AN OUTLINE OF THE PROPOSED METHOD.	
СНАРТІ	ER 3 : THE PROPOSED MULTIVARIATE PADÉ MODEL	
3.1.	LINEAR MODEL	
3.2.	QUADRATIC MODEL BY INTERPOLATION	
3.2.1		
3.2.2		
3.3.	QUADRATIC MODEL BY FITTING	
3.4.	PADÉ APPROXIMATION	
3.4.1		
0	.1.1. Padé approximation of e ^{-x}	
3.4.2		
3.5.	THE PROPOSED MELTIVARIATE PADÉ MODEL	
3.6.	THE TRUST REGION SUB-PROBLEM	
3.6.1.	FINDING A STEP SIZE	
3.7.	THE COMPLETE ALGORITHM	
3.8.	NUMERICAL RESULTS FOR THE PROPOSED METHOD	
3.8.1		
	.1.1. A 2D quadratic numerical example	
	1.2. A 2D Rosen Brock banana numerical example	
3.8	.1.3. A 2D Beale numerical example	
3.8	.1.4. A 2D cube numerical example	
	.1.5. A 4D Powell sigular numerical example	
	1.6. A 3D box numerical example	
3.8.2		
	.2.1. Example (1)	
	2.3. Example (3)	
3.8.3		

	R 4 : SENSITIVITY ANALYSIS OF CIRCUITS WITH FRA	
4.1.	THE FRACTIONAL ORDER ELEMENTS	66
4.1.1.	Fractional derivative	66
4.1.2.	Fractional elements	67
4.2.	SENSITIVITY ANALYSIS	68
4.2.1.	Illustrative example	72
CHAPTE	R 5 : YIELD ESTIMATION AND MAXIMIZATION	73
5.1.	YIELD ESTIMATION	73
5.2.	THE GEOMETRICAL APPROACH	75
5.2.1.	The simplicial approximation method	76
5.2.2.	The quadratic approximation method	76
5.2.3.	The ellipsoidal technique for design centering	78
5.3.	THE STATISTICAL APPROACH	79
CHAPTE	R 6: PRACTICAL APPLICATIONS	80
6.1.	LOW-PASS FILTER DESIGN EXAMPLES	80
6.1.1.	Passive filter example	80
6.1.2.	Active filter example	82
6.2.	BAND-PASS FILTER DESIGN EXAMPLES	86
6.2.1.	Single stage LC circuit	86
6.2.2.	T-shape circuit	89
6.2.3.	π -shape circuit	92
CHAPTE	R 7 : DISCUSSION AND CONCLUSION	100
REFERE	NCES	101

List of Tables

Table 3.1: Results of $f_1(x)$	27
Table 3.2: Results of $f_2(x)$	
Table 3.3: Results of the 2D Rosen Brock banana example	
Table 3.4: Results of the 2D Beale example	39
Table 3.5: Results of the 2D Cube example	42
Table 3.6: Results of the 4D Powell Singular example	46
Table 3.7: Results of the 3D box example	48
Table 3.8: Results of the illustrative example (1)	51
Table 3.9: Results of the illustrative example (2)	
Table 3.10: Results of the illustrative example (3)	59
Table 3.11: Results of the illustrative example (2) for quadratic model	63
Table 3.12: Results of the illustrative example (3) for quadratic model	64
Table 4.1: $(\partial y_{ii}/\partial \phi)$ for different parameters	71
Table 4.2: Sensitivity based on calculated and difference formula for the illustrat	ive
example	72
Table 4.3: The sensitivity of absolute output voltage and the sensitivity of phase	output
voltage with respect of ϕ for illustrative example	72
Table 6.1: Results for regular and fractional order elements in LC filter	
Table 6.2: Rate of change in objective function for low pass LC filter	
Table 6.3: Results for active filter	83
Table 6.4: Yield results for active filter	85
Table 6.5: Yield results for active filter with tolerance 15%	86
Table 6.6: Results for regular and fractional order elements in single stage LC	87
Table 6.7: Rate of change in objective function in single stage LC filter	88
Table 6.8: Results for regular and fractional order elements in T-shape circuit	90
Table 6.9: Rate of change in objective function in T-shape circuit	91
Table 6.10: Yield results for T-shape filter	91
Table 6.11: Results for regular and fractional order elements in π -shape circuit	92
Table 6.12: Rate of change in objective function in π -shape circuit	94
Table 6.13: Percentage of tolerance in parameters in π -shape circuit	95
Table 6.14: Yield results for π -shape filter	99

List of Figures

Figure 2.1: The general flow chart for trust region optimization	25
Figure 3.2: The result of the first simple quadratic function versus number of iteration	S
(k) starting with $x_{ini} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$	28
Figure 3.3: The result of the first simple quadratic function versus number of function	
evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$ 28	}
Figure 3.4: The result of the first simple quadratic function versus number of iteration	
(k) starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	29
Figure 3.5: The result of the first simple quadratic function versus number of function	
evaluations (N) starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	29
Figure 3.6: The result of the first simple quadratic function versus number of iteration	S
[-3]	30
Figure 3.7: The result of the first simple quadratic function versus number of function	
evaluations (N) starting with $x_{ini} = \begin{bmatrix} -3\\4 \end{bmatrix}$ 30	
Figure 3.8: The result of the second simple quadratic function versus number of	
iterations (k) starting with $x_{ini} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$	31
Figure 3.9: The result of the second simple quadratic function versus number of	
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$	31
Figure 3.10: The result of the second simple quadratic function versus number of	
r0 251	32
Figure 3.11: The result of the second simple quadratic function versus number of	
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0.25 \\ 0.5 \end{bmatrix}$	32.
Figure 3.12: The result of the second simple quadratic function versus number of	- J
r_1 5i	33
Figure 3.13: The result of the second simple quadratic function versus number of))
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} -1.5 \\ -2 \end{bmatrix}$	22
))
Figure 3.14: The result of the 2D Rosen Brock banana function versus number of $[-1]$	•
iterations (k) starting with $x_{ini} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$)
Figure 3.15: The result of the 2D Rosen Brock banana function versus number of $[-1]$	
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	
Figure 3.16: The result of the 2D Rosen Brock banana function versus number of	
iterations (k) starting with $x_{ini} = \begin{bmatrix} 0.25 \\ 0.2 \end{bmatrix}$, with $\varepsilon = 0.0001$	5
Figure 3.17: The result of the 2D Rosen Brock banana function versus number of	
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0.25 \\ 0.2 \end{bmatrix}$, with $\varepsilon = 0.0001$	6

Figure 3.18: The result of the 2D Rosen Brock banana function versus number of
iterations (k) starting with $x_{ini} = \begin{bmatrix} 0.25 \\ 0.2 \end{bmatrix}$, with $\varepsilon = 0.001$
Figure 3.19: The result of the 2D Rosen Brock banana function versus number of
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0.25 \\ 0.2 \end{bmatrix}$, with $\varepsilon = 0.001$
Figure 3.20: The result of the 2D Rosen Brock banana function versus number of
iterations (k) starting with $x_{ini} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$
Figure 3.21: The result of the 2D Rosen Brock banana function versus number of
function evaluations (N) starting with $x_{ini} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$ 38
Figure 3.22: The result of the 2D Beale function versus number of iterations (k)
starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 40
Figure 3.23: The result of the 2D Beale function versus number of function evaluations
(N) starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ 40
Figure 3.24: The result of the 2D Beale function versus number of iterations (k)
starting with $x_{ini} = \begin{bmatrix} -1.2 \\ -1 \end{bmatrix}$
Figure 3.25: The result of the 2D Beale function versus number of function evaluations
(N) starting with $x_{ini} = \begin{bmatrix} -1.2 \\ -1 \end{bmatrix}$ 41
Figure 3.26: The result of the 2D Beale function versus number of iterations (k)
starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ with $\varepsilon = 0.001$
Figure 3.27: The result of the 2D Beale function versus number of function evaluations
(N) starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ with $\epsilon = 0.001$
Figure 3.28: The result of the 2D Beale function versus number of iterations (k)
starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ with $\epsilon = 0.0001$ 44
Figure 3.29: The result of the 2D Beale function versus number of function evaluations
(N) starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ with $\varepsilon = 0.0001$ 44
Figure 3.30: The result of the 2D Beale function versus number of iterations (k)
starting with $x_{ini} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
Figure 3.31: The result of the 2D Beale function versus number of function evaluations
(N) starting with $x_{ini} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
Figure 3.32: The result of the 4D Powell Singular function versus number of iterations
$\begin{bmatrix} 3 \\ -1 \end{bmatrix}$
(k) starting with $x_{ini} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 1 \end{bmatrix}$
Figure 3.33: The result of the 4D Powell Singular function versus number of function
evaluations (N) starting with $x_{ini} = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 1 \end{bmatrix}$
L ₁ J

Figure 3.34: The result of the 3D box versus number of iterations (k) starting with
$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 1\\9\\0 \end{bmatrix} \dots \tag{49}$
Figure 3.35: The result of the 3D box versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 1 \\ 9 \\ 0 \end{bmatrix}$
Figure 3.36: The result of the 3D box versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} \dots \dots$
Figure 3.37: The result of the 3D box versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$
Figure 3.38: The result of example (1) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \dots \dots$
Figure 3.39: The result of example (1) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
Figure 3.40: The result of example (1) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 2\\3 \end{bmatrix} \dots $
Figure 3.41: The result of example (1) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
Figure 3.42: The result of example (1) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \dots $
Figure 3.43: The result of example (1) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
Figure 3.44: The result of example (2) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \dots $
Figure 3.45: The result of example (2) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$
Figure 3.46: The result of example (2) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \dots 57$
Figure 3.47: The result of example (2) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
Figure 3.48: The result of example (2) versus number of iterations (k) starting with
$x_{ini} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$
starting with $x_{ini} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$
Figure 3.50: The result of example (3) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 0.1\\0.1 \end{bmatrix} \dots $

Figure 3.51: The result of example (3) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$ 60
Figure 3.52: The result of example (3) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} -1.5\\0 \end{bmatrix} \dots $
Figure 3.53: The result of example (3) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} -1.5 \\ 0 \end{bmatrix}$ 61
Figure 3.54: The result of example (3) versus number of iterations (k) starting with
$\mathbf{x}_{\text{ini}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \dots 62$
Figure 3.55: The result of example (3) versus number of function evaluations (N)
starting with $x_{ini} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ 62
- -
Figure 3.56: The result of example (2) versus number of iterations (k) in case of the rational model and quadratic model starting with $x_{ini} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ 63
Figure 3.57: The result of example (2) versus number of function evaluations (N) in
- 0 -
case of the rational model and quadratic model starting with $x_{ini} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ 64
Figure 3.58: The result of example (3) versus number of iterations (k) in case of the
rational model and quadratic model starting with $x_{ini} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$ 65
Figure 3.59: The result of example (3) versus number of function evaluations (N) in
case of the rational model and quadratic model starting with $x_{ini} = \begin{bmatrix} 0.1 \\ 0.1 \end{bmatrix}$ 65
Figure 4.1: Illustration of circuit elements considered. (a) A passive element with
admittance y _{ij} . (b) A voltage controlled current source with a transconductance g _m 69 Figure 4.2: Low-pass LC filter72
Figure 4.2: Low-pass LC filter
Figure 5.1: A two dimensional representation of 7 Latin hypercube samples [61]75
Figure 6.1: Low-pass filter response for regular and fractional order elements81
Figure 6.2: Active filter
Figure 6.3: Active filter using integer order elements [35]
Figure 6.5: Low-pass filter response after relaxation of the constraints in active filter.84
Figure 6.6: The response of active filter for 100 random numbers at x_{final}
Figure 6.7: Single stage LC circuit86
Figure 6.8: Band-pass filter response for regular and fractional order elements in single
stage LC87
Figure 6.9: Band-pass filter response for fractional order elements after relaxation of
the constraints in the case of the single stage LC filter88
Figure 6.10: T-shape circuit89
Figure 6.11: Band-pass filter response for regular and fractional order elements in case
of the T-shape circuit89
Figure 6.12: Band-pass filter response with relaxed constraints for T-shape circuit90
Figure 6.13: π -shape circuit
Figure 6.14: Band-pass filter response for regular and for fractional order elements in
the case of π -shape circuit
Figure 6.15: Band-pass filter response with relaxed constraints for π-shape circuit94
Figure 6.16: Band-pass filter response with relaxed constraints after adding maximum
tolerance of α_1 for π -shape circuit96

Figure 6.17: Band-pass filter response with relaxed constraints after adding	g maximum
tolerance of β_1 for π -shape circuit	97
Figure 6.18: Band-pass filter response with relaxed constraints after adding	g maximum
tolerance of β_4 for π -shape circuit	97
Figure 6.19: Band-pass filter response with relaxed constraints after adding	g maximum
tolerance for all parameters for π -shape circuit	98

Abstract

Optimization is very important to find optimal nominal values of the designable system parameters. The system is required to satisfy the design specifications as well as not to be too sensitive to parameter variations. Parameter variations can be due to noise or unavoidable statistical fluctuations in the fabrication process. Usually the objective function defined by the system specifications is computationally expensive. Since the optimization process requires a significant number of function evaluations, it is recommended to represent the objective function by building up a model that approximates the objective function within a certain trust region. Many models are used among them linear and quadratic models. In this thesis, the objective function is approximated by building rational models called multivariate Padé model over a sequence of trust regions. The multivariate Padé model is constructed by using data points of O(n), where n is the number of design parameters. The proposed approach is tested by applying it to several bench mark problems.

In case of the fractional order circuits, the sensitivities are derived based on a matrix approach. An adjoint matrix approach is used in the derivation of the sensitivities in this thesis. The sensitivity with respect to the fractional derivative orders α and β are also derived. The use of fractional order elements instead of regular integer elements enhances a better circuit performance. Optimal design using the derived sensitivity can be obtained using efficient gradient optimization techniques.

The yield is defined as the probability that a design satisfies the specifications. It is difficult process to calculate as yield is represented as a statistical function. Therefore, it is desired to obtain a good starting point for yield optimization process. The proposed method with gradient optimization technique is used to obtain this starting point.

The sensitivity analysis of circuits with fractional order elements is illustrated by applying it to practical circuits of active and passive filters with different topologies. The yield is calculated and optimized by the proposed derivative free method.

Chapter 1 Introduction

Engineering systems performance is optimized by the adjustment of a set of designable parameters such that predefined design specifications are satisfied. The optimal engineering design is selected by comparing different acceptable designs. The solution of this optimization problem is the optimal design. The objective function is computed through excessive simulations in many engineering systems. The computational cost of the objective function evaluations could be very high. Therefore, one of the design objectives is to decrease the number of function evaluations.

1.1. Derivative Free Optimization Methods

These methods use only function values and can be classified to: direct search methods [38], heuristic methods [29, 31], and derivative free trust region methods [20, 32, 42-45]. The direct search method and the heuristic methods require many function evaluations to improve the current iterate when close to the optimal point. The most important used methods are the derivative free trust region methods. Trust region is used in optimization to denote the objective function of a region within a space. These methods construct model to approximate the objective function in the neighborhood of a current iterate. This neighborhood is called the trust region. The approximating model can present the objective function well within this trust region without any derivatives calculated. The model is optimized and from region to region until the solution is obtained. There exist many such models such as linear, quadratic, etc..... In this thesis, Padé approximation is introduced for the first time for trust region optimization. Powell was the first one that solved constrained optimization problems using trust region. This method depends on the construction of the cheaper model to approximate the objective function in the neighborhood of a current trust region. The objective function and the constraints are described by linear multivariate interpolation model in his proposal. Powell then described unconstrained optimization problems by a quadratic multivariate interpolation model [43-45]. Conn and Toint [20] used the same algorithm with different criterion in selecting the points and modifying the model at each iteration. Marazzi and Nocedal [32] developed an algorithm that adds a geometric constraint to the trust region. The model is generated without calculating the derivatives by evaluating the function at a certain number of points. It is easy to maximize yield by using derivative free optimization since it needs function values only without using the derivatives.