

OPTIMAL DESIGN OF FORCED DRAFT COUNTER FLOW COOLING TOWERS

By

Leena Omar Mohamed El Sayed Abd El Salam

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In MECHANICAL POWER ENGINEERING

OPTIMAL DESIGN OF FORCED DRAFT COUNTER FLOW COOLING TOWERS

By

Leena Omar Mohamed El Sayed Abd El Salam

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In MECHANICAL POWER ENGINEERING

Supervised by

Prof. Dr. Essam E. Khalil	Prof. Dr. Kamal Ahmed Abed
Professor of Mechanical Power Faculty of Engineering-Cairo University	Professor of Power and Energy National Research Centre Cairo
Dr. Gamal El H	ariry
Assistant Professor of Me Faculty of Engineering-O	

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

OPTIMAL DESIGN OF FORCED DRAFT COUNTER FLOW COOLING TOWERS

By

Leena Omar Mohamed El Sayed Abd El Salam

A Thesis Submitted to the Faculty of Engineering at Cairo University
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE In MECHANICAL POWER ENGINEERING

Approved by the Examining Committee:

Professor of Mechanical Power Engineering

Prof. Dr. Samy M. Morcos

Prof. Dr. Essam E. Khalil

Professor of Mechanical Power Engineering

Prof. Dr.Osama Ezzat Abdullatif

Professor of Mechanical Power Engineering at Shoubra, Faculty of Engineering, Benha University

Thesis Main Advisor

Internal Examiner

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017 **Engineer:** Leena Omar Mohamed El Sayed Abd El Salam

Date of Birth: 24/4/1992 **Nationality:** Egyptian

E-mail: eng.lina5@gmail.com

Phone: +01276547844

Address: 156 Remaya, Giza, Egypt

Registration Date: 1 / 10 / 2014 **Awarding Date:** / / 2017 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam El Din Khalil

Prof. Dr. Kamal Ahmed Abed

(Professor at National Research Center)

Dr.Gamal El Hariry

Examiners: Prof. Dr. Essam E. Khalil (Thesis main advisor)

Prof. Dr. Samy M. Morcos (Internal examiner)
Prof. Dr. Osama Ezzat Abdullatif (External examiner)

Professor of Mechanical Power Engineering at Shoubra,

Faculty of Engineering, Benha University

Title of Thesis: OPTIMAL DESIGN OF FORCED DRAFT COUNTER FLOW COOLING TOWERS

Key Words: Counter flow cooling towers , Forced Draft ,Parametric analysis ,Minimization, Operating cost

Summary:

The study aims at analytically determining the optimum conditions for a counter flow forced draft cooling tower taking the minimization of the operating cost as an objective. First a mathematical model that effectively describes the counter flow cooling tower was selected and the programming was carried out with MATLAB software. Then a parametric analysis was conducted in which the effect of parameters: air and water mass flow rate(s), inlet water temperature was investigated on performance parameters. Finally different case studies were examined in order to select optimum conditions which resulted in minimizing the operating cost.

Acknowledgment

I would like to thank Prof. Dr. Essam El Din Khalil, Prof. Dr. Kamal Ahmed Abed, and Dr. Gamal El Hariry for their continuous guidance, support and encouragement through supervising and mentoring this study.

Special acknowledgement should be given to Prof. AbdEl Aziz Abu M. El Fotouh (Interior Supervisor from National Research Center) for his outstanding help and valuable advice in discussing and supervising this study.

My deepest gratitude is to my family, my mother, my father, my sister and my grandparents without their encouragement and help the work wouldn't have been accomplished.

Table of Contents

Acknowledgment	I
Table of Contents	II
List of Figures	IV
List of Tables	VI
Nomenclature	VII
Chapter 1 : Introduction	1
1.1 Introduction	1
1.2 Method of operation of the cooling tower	2
1.3 Mechanism of water cooling or heat rejection	2
1.4 Classification of cooling towers	3
1.5 Common terminologies	9
1.6 Thesis layout	10
Chapter 2 : Literature Review	11
2.1 Introduction	11
2.2 Mathematical modeling	11
2.2.1 Merkel model	11
2.2.2 Poppe model	12
2.2.3 Modified version of Poppe model	13
2.3 Fill performance	14
2.4 Optimization of operating conditions	16
2.5 Objectives	20
Chapter 3 : Modelling and Cost Analysis	21
3.1 Introduction	21
3.2 Modified/Mathematical model equations	22
3.2.1 Volumetric mass transfer coefficient	23
3.2.2 Volumetric heat transfer coefficient	24
3.3 Description of the counter flow wet cooling tower problem	25
3.4 Verification	27
3.5 Cost Calculation	30
3.5.1 Operating cost due to make-up water	30
3.5.2 Operating cost due to fan power consumption	32
3.5.3 Operating cost due to pump power consumption	34
3.5.4 Operating cost	34

3.6 Maintenance cost	35
3.7 Capital/Initial Cost	37
3.8 Life cycle analysis	37
3.8.1 Case Study	37
3.9 Sensitivity Analysis	38
Chapter 4: Results and Discussion	39
4.1 Introduction	39
4.2 Parametric study	40
4.2.1 Effect of varying different operating parameters: inlet water temperature, flow rates on the outlet water temperature	
4.2.2 Effect of varying different operating parameters: inlet water temperature, flow rates on the Effectiveness	
4.2.3 Effect of varying different operating parameters: inlet water temperature, flow rates on the Range (Twi-Two)	
4.3 Case studies	44
4.3.1 Case study 1	46
4.3.2 Case study 2	51
4.3.3 Case study 3	65
Chapter 5 : Conclusions and Future work	70
5.1 Conclusions	70
5.2 Recommendations for future work	71
References	72

List of Figures

Figure 1-1: Counter flow evaporative mechanical draft cooling tower[1].	2
Figure 1-2: Classification of different types of cooling towers	
Figure 1-3: Natural draft C.T[3]	
Figure 1-4: Induced counter flow C.T[4]	4
Figure 1-5: Forced draft C.T with radial fan (left) and axial fan(right)[4]	
Figure 1-6: Cross flow C.T[4]	
Figure 1-7: Splash type fill[6]	7
Figure 1-8: Trickle type fill[6]	7
Figure 1-9: Different types of film fill [6].	7
Figure 1-10: Closed wet C.T [4]	
Figure 1-11: Hybrid C.T [8]	8
Figure 2-1: Rough corrugated fills [23]	15
Figure 2-2: Smooth corrugated fills[23]	
Figure 2-3: Horizontal (left) and Vertical (right) Corrugated Packings [26]	16
Figure 2-4:Flow chart of feedback model [28]	18
Figure 2-5: Flow chart for feedback model[29]	19
Figure 3-1: Flow chart of experimentally obtaining volumetric mass transfer coefficient	23
Figure 3-2: Flowchart for the procedure of solution using the shooting method	26
Figure 3-3: Variation of water flow rate with the fill height.	28
Figure 3-4: Variation of humidity and saturation humidity ratio (at the air temperature)	
with the fill height.	29
Figure 3-5: Variation of air and water temperatures with the fill height.	29
Figure 4-1: Effect of varying different operating parameters inlet water temperature, air	
and water flow rates on the outlet water temperature	41
Figure 4-2: Effect of varying different operating parameters inlet water temperature, air	
and water flow rates on Effectiveness	42
Figure 4-3: Effect of varying inlet water temperature, air and water flow rates on the	
Range	-
Figure 4-4: Flow chart for solution employing the shooting method for the case studies	45
Figure 4-5: Variation of required air flow rate with different outlet water temperatures for	
different areas of the fill.	47
Figure 4-6: Variation of the required Ga with outlet water temperature for different areas of	
	48
Figure 4-7: Variation of operating cost with outlet water temperature for different areas of	
the fill.	48
Figure 4-8: Variation of operating cost due to fan power consumption with outlet water	
temperature for different areas of the fill.	49
Figure 4-9: Variation of operating cost due to both fan and pump power consumptions	
with outlet water temperature for different areas of the fill	49
Figure 4-10: Variation of operating cost due to make-up water with outlet water	
temperature for different areas of the fill.	50
Figure 4-11: Variation of the required air mass flow rate for different combinations of	
outlet water temperatures, inlet water temperatures and water mass flow rate	
at a fixed load.	52

Figure 4-12: Variation of the operating cost for different combinations of outlet water temperatures, inlet water temperatures and water mass flow rate at a fixed	5 2
Figure 4-13: Variation of the operating cost due to make-up water for different combinations of outlet water temperatures ,inlet water temperatures and water mass flow rate at a fixed load	
Figure 4-14: Variation of operating cost due to fan power consumption for different combinations of outlet water temperatures ,inlet water temperatures and water mass flow rate mw at a fixed load.	
Figure 4-15: Variation of operating cost due to fan and pump power consumptions for different combinations of outlet water temperatures ,inlet water temperatures and water mass flow rate at a fixed load.	55
Figure 4-16: Contour plot of outlet water temperatures at a constant heat load	
Figure 4-17: Different design conditions for a constant outlet water temperature at a constant load	57
Figure 4-18: Percentage change of air flow rate, pressure drop, fan power, evaporated	
water for different design conditions at a constant outlet water temperature	3/
due to make-up water, operating cost due to electricity for different design	- 0
conditions at a constant outlet water temperature.	58
Figure 4-20: Different design conditions for a constant water mass flow rate at a constant heat load.	50
Figure 4-21: Percentage change of air flow rate, pressure drop, fan power, evaporated	5)
water for different design conditions at a constant inlet water flow rate	60
Figure 4-22: Percentage change of operating cost, operating cost due to fan, operating cost	
due to make-up water, operating cost due to electricity for different design	
conditions at a constant inlet water flow rate.	61
Figure 4-23: Different design conditions for a constant inlet water temperature at a constant load	62
Figure 4-24: Percentage change of air flow rate, pressure drop, fan power, evaporated	
water for different design conditions at a constant inlet water temperature	63
Figure 4-25: Percentage change of operating cost, operating cost due to fan, operating cost	
due to make-up water, operating cost due to electricity for different design	
conditions at a constant inlet water temperature.	
Figure 4-26: Case3 conditions on psychrometric chart.	66
Figure 4-27: Variation of required air flow rate with different outlet water temperatures for	67
different inlet wet bulb temperatures.	0/
Figure 4-28: Variation of operating cost with outlet water temperature for different inlet wet bulb temperatures.	68
Figure 4-29: Variation of operating cost due to fan power consumption with outlet water	00
temperature for different inlet wet bulb temperatures	68
Figure 4-30: Variation of operating cost due to fan and pump power consumptions with	- 0
outlet water temperature for different inlet wet bulb temperatures	69
Figure 4-31: Variation of operating cost due to make-up water with outlet water	
temperature for different inlet wet bulb temperatures	69

List of Tables

Table 3-1: Comparison between different models: Merkel, Poppe and Modified Poppe	21
Table 3-2: Input data for verification case.	27
Table 3-3: The unit price of water in Egypt [35]	32
Table 3-4: Price of Electricity in Egypt [37]	
Table 3-5: Typical Inspection and Maintenance schedule for cooling towers[38]	36
Table 3-6: The installed cost for the 70,000 m ³ /hr cooling tower [39]	37
Table 3-7: Basis for estimating annual O&M costs[39].	38
Table 3-8: Total Annual Cost of a 70,000m ³ /hr cooling tower[39]	38
Table 4-1: Input data for the base case.	40
Table 4-2: Price of electricity and water	40
Table 4-3: Description of Case1.	46
Table 4-4: Description of Case 2	51
Table 4-5: Description of Case 3	

Nomenclature

	Nomenciature
Symbol	Quantity
a	Fill density (m ² /m ³)
A	Cross-sectional area (m ²)
Ce	Price of electricity (LE/kW.hr)
Cop	Operating cost (LE/month)
CopF	Operating cost due to fan (LE/month)
CopMw	Operating cost due to make-up water (LE/m ³)
CopP	Operating cost due to pump (LE/month)
Cw	Price of water (LE/m ³)
c_{pv}	Specific heat of vapour (J/kg.K)
c_{pw}	Specific heat of water (J/kg.K)
c_{pa}	Specific heat of air (J/kg.K)
Ga	Air Loading (kg/m ² .s)
Gw	Water Loading (kg/m ² .s)
h	Enthalpy (J/kg)
hc	Volumetric convective heat transfer coefficient(W/K.m ³)
H	Number of operating hours
K	Surface mass transfer coefficient (kg/s.m ²)
Ka	Volumetric mass transfer coefficient (kg/s.m ³)
K_{annu}	Annualization factor
Kf	Fill loss coefficient
L	Length or Height (m)
L/G	Liquid to Gas or water to air mass flow rate (kgw/kga)
Le	Lewis factor
Me	Merkel number
mw	Mass flow rate of water (kg/s)
n	Number of cycles of concentration
Pf	Power required by the fan (Watt)
Pt	Total pressure (Pa)
Pv	Vapour pressure (Pa)
ΔPd	Dynamic pressure drop (Pa)
_	P Total pressure drop (Pa)
Q	Heat load (MWatt)
T	Temperature (°C)
Tdb	Air dry bulb temperature (°C)
Twb	Air wet bulb temperature (°C)
Twi	Inlet water temperature (°C)
Two	Outlet water temperature (°C)
W	Humidity ratio (kg _{w.v} /kg _{d.a})
WS	Saturation humidity ratio (kg _{w.v} /kg _{d.a})
Z	Height (m)

 $\begin{array}{ccc} \textbf{Greek symbols} \\ \mu & \text{Dynamic viscosity (kg/s.m)} \end{array}$

ηf Efficiency of the fan ηp Efficiency of the pump

 ρ Density (kg/m³)

Subscripts

bd Blow down

d Drift d.a Dry air

ev Evaporated water

i Inlet ma Moist air mw Make-up water

o Outlet s Saturation w.v Water vapour

Superscripts

a air w water

Abbreviations

CT Cooling Tower

CTI Cooling Tower Institute

E-NTU Effectivness-Number of Transfer Units HCP Horizontally Corrugated Packing

LCCA Life Cycle Cost Analysis

TAC Total Annual Cost

VCP Vertically Corrugated Packing

1D -ODE One Dimensional Ordinary Differential Equation

4-ODEs Four Ordinary Differential Equation

Abstract

Cooling towers are used in many applications such as refrigeration, power generation, chemical and petrochemical plants which use water to remove heat generated from different processes. The main function of the cooling tower is to cool down a certain amount of hot water into a lower temperature, in order to reuse the water.

The current thesis focuses on a certain type "Counter flow forced draft" cooling towers. The present study aims at achieving the most optimum design and operating conditions of counter flow cooling tower to enhance the performance and hence reduce the costs. First, a mathematical model that effectively describes the counter flow cooling tower was selected and modified and programmed with MATLAB software. Second, a parametric study was carried out to examine the effect of some operating parameters such as: inlet water temperature, inlet air and water mass flow rates on performance parameters. The performance parameters studied included the Effectiveness, Range, outlet water temperature. Third, different case studies were examined to determine the optimum design conditions (Case study 1, Case study 2) of the counter flow cooling tower in order to reduce the operating cost. "Case study 3" examined the effect of varying inlet wet bulb temperature on the operating costs of the cooling tower.

The results from the parametric study showed that as the air mass flow rate increased both Effectiveness and Range increased while outlet water temperature decreased. On the contrary, as the water flow rate increased both Effectiveness and Range decreased while outlet water temperature increased. The Effectiveness, Range and outlet water temperature varied directly with inlet water temperature. Increasing the inlet water temperature by 20%, increased the Effectiveness by 14%, the Range by 58.82% and the outlet water temperature 7.6%.

Considering the case studies, the results from "Case study 1" showed that at outlet water temperature 30°C, operating on a cross sectional area of 8.5m² would reduce the operating cost by 11.3 % than when operating on a cross sectional area of 5.5m². For "Case study 3" at outlet water temperature 30°C, as the wet bulb temperature increased from 20°C to 26 °C the operating cost increased by 34.8 %. The results from "Case study 2"showed that the optimum design condition was defined by outlet water temperature and inlet water temperature. The condition having the highest inlet and outlet (Twi=46°C, Two=34°C) water temperature resulted in the minimum operating cost. The percentage change in the highest operating cost from the least operating cost corresponded to~ (25%).

Chapter 1: Introduction

1.1 Introduction

Different applications such as refrigeration, power generation, chemical and petrochemical plants use water to remove heat generated from different processes. In order to get rid of the heat generated, the hot water can be discharged (dumped) directly into large water reservoirs (sinks) such as rivers, lakes, seas and oceans. However, these large reservoirs are not always available near the industries. Also, the water coming out from different processes can have a high temperature so discharging it directly into the water reservoirs can cause death of living creatures. Hence, the federal and local governments have established strict regulations concerning the direct discharge of water.

In order to get rid of the heat generated another alternative exists. The hot water could be cooled by means of air and then reused. This could be achieved by means of "Cooling Tower". Cooling towers are mechanical equipment that dissipate waste thermal energy into the atmosphere.

If the air and water are in direct contact then the cooling tower is termed as an evaporative/wet type cooling tower .However if the water flows in tubes and the air flows at the outside of the tubes then the cooling tower is termed as a dry type cooling tower .This study is concerned with the wet/evaporative type. The term evaporative refers to the main type of heat rejection method. The heat rejection occurs mainly by means of evaporation of a small amount of the water , thus lowering its temperature while increasing the air temperature and the amount of water vapor in air.

There are many advantages of evaporative over dry type cooling towers. First the water could be cooled to a low temperature. Second they require smaller surface area to reject/remove the same heat load. Thus the evaporative cooling tower is a suitable choice when the desired water temperature is low or when the amount of heat rejected is high (lowering the surface area is an objective).

On the other side the main disadvantage include water mass flow rate reduction due to the evaporation process. This could be a problem especially in countries where the price of water is high or the availability of the water is low.

Another specification for the cooling tower is the relative direction between water and air. There exist two types of flow counter and cross flows. The advantage of the counter flow type is that it gives better distribution of the water with the air hence increasing the performance of the tower.

Finally the method by which the air moves through the tower could be either using a fan (mechanical draft) or depending on the buoyancy effect (natural draft). The disadvantage of the natural draft that it requires a large height thus a high capital cost. On the other side, the mechanical draft requires smaller volume but higher operating cost due to the dependence on the fan (s). The present study is concerned with the Counter flow mechanical draft evaporative cooling tower type. The working principle of an evaporative counter flow mechanical draft cooling tower could be demonstrated as in Figure 1-1.

1.2 Method of operation of the cooling tower

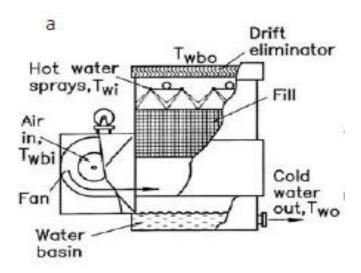


Figure 1-1: Counter flow evaporative mechanical draft cooling tower[1].

The cooling tower shown in Figure 1-1 consists of: water distribution system, packing, collection/water basin, drift eliminator and the surrounding structure (i.e casing).

The hot water enters the tower through a water distribution system where it is sprayed in form of small droplets. Then the droplets undergo breaking as in splash fill type, flow as a thin film as in film fill type or undergo both breaking and film forming as in tickle type fills. Inside the fill most of the heat rejection occurs about 90% [2]. The air is drawn into the cooling tower by means of a fan installed at the exit of the tower. Because the fan is at the exit then the cooling tower is classified as induced type mechanical draft type. If the fan is located at the entrance then its function is to push the air into the tower and then the cooling tower is classified as forced type mechanical draft type. Both the water and air flow vertically in opposite directions, the water flows downwards while the air flows upwards which would imply counter flow type. Below the fill the water droplets are also cooled. Finally the cooled water is collected in the water or collecting basin and returned to the process.

Considering the air which enters from below the fill and cools the water as it rises upward .It exits the tower containing more amount of water vapor than when entering the tower. At the exit of the tower before the fan drift eliminators exists to prevent the entrainment of water droplets with air.

1.3 Mechanism of water cooling or heat rejection

The cooling of the water occurs due to both mass and heat transfer. The cooling process occurs due to mass transfer (diffusion) mainly and convection .Mass transfer of water into air occurs because the partial pressure of water vapor in air is lower than the partial pressure of the saturated air surrounding the water. The convection occurs due to the temperature difference between ambient air and hot water. The rates of mass and heat transfer are increased mainly by