تأثيرالتسميد العضوي والحيوى على النمو والمحصول وجوده الثمار والمحتوي المعدني للأوراق في العنب السوبيريور

رسالة مقدمة من أحمد عبدالرحيم محمد

بكالوريوس علوم زراعية (بساتين) ، جامعة جنوب الوادى 2000

للحصول على درجة الماجستير في العلوم الزراعية (فاكهة)

قسم البساتين كلية الزراعة جامعة عين شمس

تأثيرالتسميد العضوي والحيوي على النمو والمحصول وجودة الثمار والمحتوى المعدنى للأوراق في العنب السوبيريور

رسالة مقدمة من

أحمد عبدالرحيم محمد

بكالوريوس علوم زراعية (بساتين) ، جامعة جنوب الوادى 2000

لجنة الإشراف

د. حسن محمد فاضل الوكيل

أستاذ الفاكهة ، قسم البساتين، كلية الزراعة، جامعة عين شمس (المشرف الرئيسي)

د. أحمد عبد الحميد عوض

أستاذ الفاكهة المساعد، قسم البساتين، كلية الزراعة، جامعة عين شمس

د. نهى أحمد إبراهيم منصور

مدرس الفاكهة، قسم البساتين، كلية الزراعة، جامعة عين شمس

صفحه الموافقة على الرسالة

تأثيرالتسميد العضوي والحيوي على النمو والمحصول وجودة الثمار والمحتوى المعدني للأوراق في العنب السوبيريور

رسالة مقدمة من

أحمد عبدالرحيم محمد

بكالوريوس علوم زراعية (البساتين)، جامعة جنوب الوادي 2000

للحصول على درجة الماجستير في العلوم الزراعية (فاكهة)

اللجنة:

د. محمد دياب عيد الديب

أستاذ الفاكهة المتفرغ ، كلية العلوم الزراعية البيئية، جامعة قناة السويس

د. أحمد عبد الفتاح محمود الجزار

أستاذ الفاكهة ، قسم البساتين، كلية الزراعة ، جامعة عين شمس

د. أحمد عبد الحميد عوض

أستاذ الفاكهة المساعد، قسم البساتين، كلية الزراعة ، جامعة عين شمس

د. حسن محمد فاضل الوكيل

د. حسن محمد فاضل الوكيل

أستاذ الفاكهة، قسم البساتين، كلية الزراعة، جامعة عين شمس

تاريخ المناقشة: 2015/4/ 20

وقد تمت مناقشة الرسالة والموافقة عليها:

ABSTRACT

Ahmed Abd Elraheem Mohamed: Effect of Organic and Biofertilization on Growth, Yield, Fruit Quality and Leaf Mineral Content of Superior Grapevines Unpublished M.Sc. Thesis, Department of Horticulture Faculty of Agriculture, Ain Shams University, 2015

This investigation was carried out through two successive seasons (2012 and 2013) in a private grapevine orchard located at 76 kilometer from Cairo on the desert road to Alexandria, Egypt on five years- old Superior grapevines budded on salt creek rootstock grown in a sandy loam soil. Planting distance was 2 X 3 meters apart under drip irrigation system with well water, the vines were cane-pruned and trellised by the modified "Baron" system. The aim of this study was to examine the possibility of saving nitrogen requirement by using organic and biological nitrogen fertilizers comepletely instead of mineral nitrogen fertilizers. Mineral nitrogen fertilization was applied as "ammonium nitrate" (33.5% N) by the rate 60 kg actual N/fed about (85.7 g/N/vine) as a control treatment. The experiment included two sources of organic manure (compost and chicken manure) each organic source consisted of four levels (100%, suboptimal levels 75%, 50% and 25%) meaning, addition of (60, 45, 30 and 15 kg actual N/fed), respectively and four levels of biofertilizer Nitrobein (0, 9, 12 and 15 ml/vine). Thus the experiment consists of 9 treatments arranged as a randomized complete block design. Each treatment included three replicates and each represented by three vines. Results showed that, the best values of yield, fruit quality and petioles macro and micronutrient content in most cases were observed by T9 (mineral treatment) equaled by chicken manure treatment especially T6 (75% chicken manure + 9 ml Nitrobein). All organic manure treatments gave lower significant values of berry juice nitrate and nitrite content compared with T9 (mineral treatment). Therefore, Superior grapevine production in Egypt can rely on organic manure as an

alternative to mineral fertilization and culd be reduce 25% from actual nitrogen addition. Chicken manure might be used as most available and economic substitute for compost with increasing in yield, fruit quality and nutrients status as well as reducing environmental pollution and the best treatment was (75% chicken manure + 9 ml Nitrobein).

Key words: Chicken manure - compost- fruit quality - Nitrobein-Superior grapevine- Yield

CONTENTS

	Page
	No.
LIST OF TABLES	III
LIST OF FIGURES	VI
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1. Bud behavior	4
2.2. Vegetative Growth	4
2.3. Yield and cluster characteristics	7
2.3.1. Yield	7
2.3.2. Cluster weight	9
2.4. Physical characteristics of berries	11
2.5. Chemical characteristics of berries	13
2.5.1 Total soluble solid % (T.S.S.%)	13
2.5.2 Acidity and TSS/acid ratio	14
2.5.3. Nitrate (NO ₃ and nitrite (No ₂)	15
2.6. Leaf mineral content	16
3- MATERIAL AND METHODS	18
3.1. Bud behavior	20
3.2. Vegetative growth parameters	20
3.3. Yield and cluster characteristics	21
3.4. Berries Physical characteristics	21
3.5. Berries chemical characteristics	21
3.6. Mineral analysis	22
4- RESULTS AND DISCUSSION	23
4.1.Bud behavior	23
4.1.1. Final bud burst percentage	23
4.1.2. Vegetative buds percentage	23
4.1.3. Fruitful buds percentage	23
4.1.4. Bud fertility coefficient	24
4.2. Vegetative growth parameters	29

4.2.1. Shoots length	29
4.2.2. Leaves number/shoot	29
4.2.3. Leaf area	29
4.2.4. Weight of annual pruning wood/vine	30
4.3. Yield and cluster characteristics	35
4.3.1. Yield /vine	35
4.3.2. Cluster number /vine	36
4.3.3. Cluster weight average	36
4.3.4. Cluster length average	37
4.3.5.Cluster width average	37
4.4. Berries physical characteristics	43
4.4.1. Weight of 100 berries	43
4.4.2.Volume of 100 berries	43
4.4.3. Berry firmness	43
4.4.4. Berry adherence strength	43
4.5.Chemical characteristics of berries	49
4.5.1. Total soluble Solids (TSS)	49
4.5.2.Titratable acidity	49
4.5.3.TSS / acid ratio	49
4.5.4.Berry juice nitrate content (NO ₃)	50
4.5.5. Berry juice nitrite content (NO ₂)	50
4.6.Leaf mineral content	57
4.6.1. Leaf nitrogen content	57
4.6.2. Leaf phosphorus content	57
4.6.3.Leaf potassium content	57
4.6.4. Leaf calsium content	58
4.6.5. Leaf magnesium content	58
4.6.6. Leaf iron content	58
4.6.7. Leaf zinc content	58
4.6.8. Leaf manganese content	58
5-SUMMARY AND CONCLUTIONS	68
6-REFERENCES	74
ARABIC SUMMARY	

LIST OF TABLES

Гable		Pa
No.		No
1	Analysis of the experimental soil	18
2	The chemical and physical analysis of compost and	
	chicken manure	20
3	Effect of organic and biofertilization on final bud burst	
	(%) of Superior grapevines in 2012 and 2013 seasons	2
4	Effect of organic and biofertilization on vegetative buds	
	(%) of Superior grapevines in 2012 and 2013 seasons	20
5	Effect of organic and biofertilization on fruitful buds (%)	
	of Superior grapevines in 2012 and 2013 seasons	2
6	Effect of organic and biofertilization on coefficient of	
	bud fertility of Superior grapevines in 2012 and 2013	
	seasons	2
7	Effect of organic and biological nitrogen fertilization on	
	shoot length (cm) of Superior grapevines in 2012 and	
	2013 seasons	3
8	Effect of organic and biological nitrogen fertilization on	
	number of leaves/shoot of Superior grapevines in 2012	
	and 2013 seasons	32
9	Effect of organic and biological nitrogen fertilization on	
	leaf area (cm ²) of Superior grapevines in 2012 and 2013 seasons	3.
10	Effect of organic and biological nitrogen fertilization on	٥.
10	weight of annual pruning wood (kg)/vine of Superior	
	grapevines in 2012 and 2013 seasons	34
11	Effect of organic and biofertilization on yield/vine (kg)	3
11	of superior grapevines in 2012 and 2013 seasons	38
12	Effect of organic and biological nitrogen fertilization on)(
12	no. of clusters/vine of superior grapevines in 2012 and	
		39
	2013 seasons)

Гable		Page
No.		No.
13	Effect of organic and biological nitrogen fertilization on	
	cluster weight of superior grapevines in 2012 and 2013	
	seasons	40
14	Effect of organic and biofertilization on cluster length	
	of superior grapevines in 2012 and 2013 seasons	41
15	Effect of organic and biofertilization on cluster width of	
	superior grapevines in 2012 and 2013 seasons	42
16	Effect of organic and biofertilization on weight of 100	
	berries of superior grapes in 2012 and 2013 season.	45
17	Effect of organic and biofertilization on volume of 100	
	berries of superior grapes in 2012 and 2013 season	46
18	Effect of organic and biofertilization on berry firmness	
	of superior grapes in 2012 and 2013 season	47
19	Effect of organic and biofertilization on berry adherence	
	strength of superior grapes in 2012 and 2013 seasons	48
20	Effect of organic and biological nitrogen fertilization on	
	TSS of superior grapes berries in 2012 and 2013	
	seasons	52
21	Effect of organic and biological nitrogen fertilization on	
	acidity of superior grapes berries in 2012 and 2013	
	seasons	53
22	Effect of organic and biological nitrogen fertilization on	
	TSS/acid ratio of superior grapes berries in 2012 and	
	2013 seasons	54
23	Effect of organic and biological nitrogen fertilization on	
	juice nitrite content of superior grapes berries in 2012	
	and 2013 seasons	55
24	Effect of organic and biological nitrogen fertilization on	
	juice nitrate content of superior grapes berries in 2012	
	and 2013 seasons	56

Table No.		Page No.
25	Effect of organic and biological nitrogen fertilization on	
	N of superior grapevine in 2012 and 2013 seasons	60
26	Effect of organic and biological nitrogen fertilization on	
	P of superior grapevine in 2012 and 2013 seasons	61
27	Effect of organic and biological nitrogen fertilization on	
	K of superior grapevine in 2012 and 2013 seasons	62
28	Effect of organic and biological nitrogen fertilization on	
	Ca of superior grapevine in 2012 and 2013 seasons	63
29	Effect of organic and biological nitrogen fertilization on	
	Mg of superior grapevine in 2012 and 2013 seasons	64
30	Effect of organic and biological nitrogen fertilization on	
	Fe of superior grapevine in 2012 and 2013 seasons	65
31	Effect of organic and biological nitrogen fertilization on	
	Zn (ppm) of superior grapevine in 2012 and 2013	
	seasons	66
32	Effect of organic and biological nitrogen fertilization on	
	Mn (ppm) of superior grapevine in 2012 and 2013	
	seasons	67

LIST OF FIGURES

Fig.		Page
No.		No.
1	Effect of organic and biofertilization on final bud burst	
	of superior grapevines in 2012 and 2013 seasons	25
2	Effect of organic and biofertilization on vegetative buds	
	of superior grapevines in 2012 and 2013 seasons	26
3	Effect of organic and biofertilization on fruitful buds of	
	superior grapevines in 2012 and 2013 seasons	27
4	Effect of organic and biofertilization on coefficient of	
	bud fertility of superior grapevines in 2012 and 2013	
	seasons	28
5	Effect of organic and biological nitrogen fertilization on	
	shoot length of superior grapevines in 2012 and 2013	
	seasons	31
6	Effect of organic and biological nitrogen fertilization on	
	number of leaves/shoot of superior grapevines in 2012	
	and 2013 seasons	32
7	Effect of organic and biological nitrogen fertilization on	
	leaf area of superior grapevines in 2012 and 2013	
	seasons	33
8	Effect of organic and biological nitrogen fertilization on	
	weight of annual pruning wood of superior grapevines	
	in 2012 and 2013 seasons	34
9	Effect of organic and biofertilization on yield/vine of	
	superior grapevines in 2012 and 2013 seasons	38
10	Effect of organic and biological nitrogen fertilization on	
	no. of clusters/vine of superior grapevines in 2012 and	
	2013 seasons	39

Fig.		Page
No.		No.
11	Effect of organic and biological nitrogen fertilization on	
	cluster weight of superior grapevines in 2012 and 2013	
	seasons	40
12	Effect of organic and biofertilization on cluster length of	
	superior grapevines in 2012 and 2013 seasons	41
13	Effect of organic and biofertilization on cluster width of	
	superior grapevines in 2012 and 2013 seasons	42
14	Effect of organic and biofertilization on weight of 100	
	berries of superior grapes in 2012 and 2013 season	45
15	Effect of organic and biofertilization on volume of 100	
	berries of superior grapes in 2012 and 2013	
	season	46
16	Effect of organic and biofertilization on berry firmness	
	of superior grapes in 2012 and 2013 season	47
17	Effect of organic and biofertilization on berry adherence	
	strength of superior grapes in 2012 and 2013	
	season	48
18	Effect of organic and biological nitrogen fertilization on	
	TSS of superior grapes berries in 2012 and 2013	
	seasons	52
19	Effect of organic and biological nitrogen fertilization on	
	acidity of superior grapes berries in 2012 and 2013	
	seasons	53
20	Effect of organic and biological nitrogen fertilization on	
	TSS/acid ratio of superior grapes berries in 2012 and	
	2013 seasons	54
21	Effect of organic and biological nitrogen fertilization on	
	juice nitrite content of superior grapes berries in 2012	
	and 2013 seasons	55

VIII

Fig.		Page
No.		No.
22	Effect of organic and biological nitrogen fertilization on	
	juice nitrite content of superior grapes berries in 2012	
	and 2013 seasons	56
23	Effect of organic and biological nitrogen fertilization on	
	N of superior grapevine in 2012 and 2013 seasons	60
24	Effect of organic and biological nitrogen fertilization on	
	P of superior grapevine in 2012 and 2013 seasons	61
25	Effect of organic and biological nitrogen fertilization on	
	K of superior grapevine in 2012 and 2013 seasons	62
26	Effect of organic and biological nitrogen fertilization on	
	Ca of superior grapevine in 2012 and 2013 seasons	63
27	Effect of organic and biological nitrogen fertilization on	
	Mg of superior grapevine in 2012 and 2013 seasons	64
28	Effect of organic and biological nitrogen fertilization on	
	Fe of superior grapevine in 2012 and 2013 seasons	65
29	Effect of organic and biological nitrogen fertilization on	
	Zn of superior grapevine in 2012 and 2013 seasons	66
30	Effect of organic and biological nitrogen fertilization on	
	Mn of superior grapevine in 2012 and 2013 seasons	67

1. INTRODUCTION

Grape (*Vitis vinifera* L.) is considered the first major fruit crop in its production all over the world. In Egypt, grapes rank second among fruit crops while citrus being the first according to the statistics of the **M.A.L.R.** (2013) amounted to the cultivated area in Egypt 188.543 Fed. produced about 1378815 tons. Superior grapevine cultivar is considered a prime and popular grapevine cultivar, successfully grown under Egypt conditions. It ripens early in the last week of May under sandy soil conditions. In addition, it has a greater potentiality for exportation to foreign markets due to its early ripening and this reduces competition.

Nitrogen (N) is an essential constituent of all living creatures. Without N we would not exist, simply because nitrogen is one of the major plant nutrients, being a part of protein, enzymes, amino acids, polypeptides and many other biochemical compounds in plant system i.e. encouraging cell division and the development tissue (Mengel and **Kirkby**, 1987). At the same time it would be incorrect to state that the use of mineral N is without problems. It is definitely not. First, once applied, N is easily lost to the wider environment, regardless whether it stems from industrial fertilizers or from recycled "natural" products. Lost N can have negative impacts on the quality of air and water, as it is associated with the formation of smog and tropospheric ozone, global warming effects, depletion of stratospheric ozone and negatively affects the quality of ground water and surface water. Lost N can thus have a serious impact on the health of plants, animals and men, on the quality of ecosystems and, in the end, on biodiversity (Erisman et al., 2011) and (Sutton et al., 2011). Global-level mineral N losses to the environment from mineral fertilizer use are currently 36 mill. t yr⁻¹, worth USD 11 700 mill. and with adverse environmental impacts (Rabindra . et al., 2002). Increased mineral-nitrogen use is needed to ensure food security. However, its application has to be planned in a scientific manner that optimizes its use and ensures productivity improvements. In addition to measures to enhance mineral-N fertilizer productivity, there is also scope for further augmenting nitrogen supplies through improvements in production systems and exploitation of alternative nutrient sources such as biological nitrogen fixation (BNF) and organic recycling.

Organic manure and bio fertilizers are the alternate sources to meet the nutrient requirement of trees. Organic manure is derived from animal or plant sources. It is an excellent source of organic matter, macro and micronutrient. In addition to providing nutrients for crop growth, manure has several beneficial effects on soil properties. Application of organic fertilizers was found to improve structural stability and lowered bulk density of the soil. It improved moisture retention, water infiltration rate and the hydraulic conductivity of soil (**Tisdale** *et al.*, **1990**; **Young,1997**).

Also, it enhanced soil biological properties (**Chai et al.**, **1988**; **Tirol** – **Padre et al.**,**2007**). The possibility of using the organic fertilization particularly at the appropriate rate for increasing yield and improving fruit quality was approached by many workers (**Hussein et al.**, **2005**; **Omar**, **2005** and **Marzouk & Kassem 2011**).

Recently, research work is oriented to evaluate biofertilization as a new method for plant nutrition. In biofertilization, some living microorganisms such as bacteria and fungi are used to improve soil fertility (Marschner, 1988). Field results indicating response to nonsymbiotic bio-inoculants such as Azotobacter on cereals, millets, vegetables, cotton, and sugarcane; and Azospirillum on corn, sorghum, panicum and setaria data proved that, a reduction in nitrogen requirements of 20–30 kg ha⁻¹ has been reported Rabindra *et al.* (2002). Biofertilization is safe for human and environment. Also using them was accompanied with reducing the great pollution occurred on our environment as well as for producing organic foods for export (Abdelaal *et al.* 2010). The use of microorganisms is of immense value in order to promote the circulation of plant nutrients and reduce the need for chemical fertilizers, where organic agriculture is one of the ways that can produce high quality crops (Zarabi *et al.*, 2011).