CORRELATION BETWEEN SERUM CALCIUM AND MAGNESIUM LEVELS AND SEVERITY OF ISCHEMIC CEREBRO-VASCULAR STROKE

CLINICAL AND LABORATORY STUDY

Thesis

Submitted for Partial Fulfillment of Master Degree in **NEUROPSYCHIATRY**

By

MONA MOSTAFA EL SHERBINY (M.B., B.Ch.)

Supervisors

PROF. DR. MAGED ABD EL NASEER

Professor of Neurology, Faculty of Medicine, Cairo University

PROF. DR. MONTASERHEGAZY

Professor of Neurology, Faculty of Medicine, Cairo University

DR. MARWAFARGHALY

Lecturer of Neurology
Faculty of Medicine, Cairo University

FACULTY OF MEDICINE CAIRO UNIVERSITY

2014

تقرير جماعي

عن مناقشة رسالة الماجيستير الخاصة بالطبيبة/ منى مصطفى عبد الخالق الشربيني توطنة للحصول على درجة الماجيستير في الامراض العصبية.

اجتمعت لجنة المناقشة و الحكم على الرسالة المقدمة من الطبيبة/ منى مصطفى عبد الخالق الشربيني توطئة للحصول على درجة الماجيستير في الامراض العصبية و المشكلة بقرار من مجلس الكلية و المعتمد من السيد الاستاذ الدكتور / نائب رئيس الجامعة للدراسات العليا.

و تتكون من السادة الاساتذة:-

استاذ الامراض العصبية بكلية الطب جامعة القاهرة أ.د ماجد عبد النصير

(عن المشرفين)

استاذ الامراض العصبية بكلية الطب جامعة القاهرة أ.د. حاتم سمير

(ممتحن داخلی)

أ.د. عزة عبد الناصر استاذ الامراض العصبية بكلية الطب جامعة عين شمس

(ممتحن خارجي)

و ذلك بمشيئة الله تعالى يوم السبت الموافق 2014/3/22 و ذلك بقاعة مركز السموم بكلية طب (القصر العيني)جامعة القاهرة.

و شملت الدراسة: - العلاقة بين نسبة الكاسيوم و الماغنسيوم بالدم و الاحتشاء الدماغي.

قررت اللجنة بعد المناقشة:-

أ د عزة عبد الناصر

أ.د. ماجد عبد النصير أ.د. حاتم سمير

عاهر برالي محتمد

بسم الله الرحمن الرحيم

ACKNOWLEDGEMENT

First, and foremost, all thanks and gratitude to \mathcal{ALLAH} , most gracious and most merciful

I would like to express my deepest and sincere thanks and appreciation to *Prof. Dr. Maged Abd El Naseer*, Professor of Neurology, Faculty of Medicine, Cairo University, for his continuous guidance and valuable advice for enriching this work. Working under his supervision has been a great honor to me.

I am extremely grateful and indebted to *Prof. Dr. Montaser Hegazy* Professor of Neurology, Faculty of Medicine, Cairo University, for his continuous guidance, valuable advice and encouragement in performing this work.

I would like to express my sincere appreciation and profound thanks to *Dr. Marwa Farghaly*, Lecturer of Neurology, Faculty of Medicine, Cairo University, for her valuable instructions, great effort and support.

I have to admit that all my success is a profit of your upbringing "<u>My</u> dear father General Dr Mostafa El Sherbiny".

My deepest gratitude and sincere appreciation goes to" Neurology team in AGOUZA police hospital leaded by Dean Dr. Moataz Abd El Radi, for their valuable help, advice and cooperative attitude.

Words fail to express my deepest gratitude and sincere appreciation to my *family* for their support, encouragement and help throughout the study.

Marwa Shalaby special thanks to you.

*F*inally, I am really grateful for all *patients* who participated in this work.

Mona Mostafa El Sherbiny

CONTENTS

	Page
•	LIST OF ABBREVIATIONS
•	LIST OF TABLES II
•	LIST OF FIGURESIII
•	INTRODUCTION 1
•	AIM OF WORK 5
•	REVIEW OF LITERATURE 7
	o Chapter 1: Calcium & Magnesium hemostasis 8
	o Chapter 2: Stroke pathogenesis
	o Chapter 3: Ca & Mg in stroke pathogenesis
•	PATIENTS & METHODS 51
•	RESULTS 58
•	DISCUSSION 85
•	SUMMARY 92
•	CONCLUSION
•	RECOMMENDATION
•	REFERENCES
•	APPENDIX 121
	ARABIC SUMMARY 128

LIST OF ABBREVIATIONS

ADP Adenosine pyrophosphoric acid

AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid

ASIC Acid-sensing ion channels
ATP Adenosine triphosphate
ATP-ase Adenosine triphosphatase

BBB Blood brain barrier

BDNF Brain-derived neuro-trophic factor

BI Barthel Index

CKD Chronic kidney disease CSF Cerebrospinal fluid

CLA Conjugated linoleic acid
CIMT Carotid intimal thickening
DNA Deoxyribonucleic Acids
DCT Distal convoluted tubules

ECF Extracellular fluid

ER Endoplasmic reticulum

GSH Glutathione

GFR Glomerular filtration rate

H₂O₂ Hydrogen peroxide

HDLs High-density lipoproteins

HMG-CoA reductase | 3-hydroxy-3-methylglutaryl-CoA reductase

I-Ca Ionized calcium
IgE Immunoglobin E

IGF-I Insulin-like growth factor I

IL-1β Interlukin- 1βIP IsoprostanesIL-6 Interlukin-6

iNOS Inducible Nitric Oxide Synthase

IEIC Inward excitotoxic injury current calciupermeable

channels

InsP3Rs Inositol-1,4,5-trisphosphate receptors

IP3 Inositol-trisphosphate
LDLs Low-density lipoproteins

LCAT Lecithin: cholesterol acyltransferase

Mg²⁺ Magnesium

MMPs Metallo proteinases
MgCl₂ Magnesium chloride
NMDA N-methyl-D-aspartate

Na⁺ Sodium ion

NIHSS National Institutes of Health Stroke Scale

NO Nitric oxide

NCX Sodium-calcium exchanger

O₂ Superoxide anions
OH Hydroxyl radicals
ONOO Peroxy-nitrite

PTH Parathyroid hormone

PUFA Poly unsaturated fatty acids

PPAR Peroxisome proliferators activated receptor

PCMA plasma membrane Ca(2+)-ATPase

PWV Pulse wave velocity

PAI-1 Plasminogen activator inhibitor type 1

RNA Ribonucleic acid

ROS Radical Oxygen Species
RyRs Ryanodine receptors
RDS Rankain disability scale
SOD superoxide dismutase

SOCE Store-operated intracellular calcium entry SERCA Sarco(Endo)plasmic reticulum calcium

tPA Tissue plasminogen activator

TALH Thick ascending limb of the loop of Henle

TAL Thick ascending limb
TNF-α Tumour necrosis factor

TRP Transient receptor potential channels

TCA Tricarboxylic acid
T-Ca Total calcium

VDCCs Voltage-dependent calcium channel

WHO World Health Organization 1, 25 (OH)₂D **1**,25-Dihydroxyvitamin D

LIST OF FIGURES

No.	Title	Page
1	Showing calcium distribution in the body	9
2	Showing calcium homeostasis and factors affecting it	12
3	Showing Magnesium distribution in the body	15
4	Showing summary of cascade of pathogenesis	20
5	Showing Glutamate Excitotoxicity	22
6	Role of mitochondia and caspases in ischemia	27
7	Showing role of Mg in atherosclerosis	49
8	Showing distribution of infarction site	65
9	Mg & Calcium levels compared to stroke impairmentin stroke patients	70
10	Mg level in comparison to dependencein stroke patients	71
11	Total calcium compared to dependencein stroke patients	72
12	Ionized Ca compared to dependencein stroke patients	73

LIST OF TABLES

No.	Title	Page
1	Age among patients and control group	59
2	Sex distribution among patient and control groups	60
3	Showing degree of impairment on admission of stroke patients	60
4	Degree of impairment on discharge of stroke patient	61
5	Range, mean and SD of NIHSS in stroke patients	61
6	Degree of dependence on admission of stroke patients	62
7	Degree of dependence on discharge of stroke patients	63
8	Range, mean and SD of Barthel index in stroke patients	63
9	Range, mean and SD of Oxburye in stroke patients	64
10	Carotid duplex finding among study population	64
11	Range, mean and SD of serum Mg level in patients and control	66
12	Range, mean and SD of total Ca level in patients and control group	66
13	Range, mean and SD of serum ionized Ca level in patients and control group	67
14	Comparing serum Mg, total and ionized Ca with degree of impairment of stroke on admission of stroke patients	69
15	Comparing serum Mg level to degree of dependence on admission of stroke patients	71
16	Comparing serum total Ca level to degree of dependence on admission of stroke patients	72
17	Comparing serum ionized Ca level to degree of dependence on admission of stroke patients	73
18	Comparing serum Mg level to carotid duplex findings in stroke patients	74
19	Comparing serum total Ca level to carotid duplex findings in stroke patients	75

No.	Title	Page
20	Comparing serum ionized Ca level to carotid duplex findings in stroke patients	76
21	Comparing serum Mg level to site of lesion in MRI brain in stroke patients	77
22	Comparing serum total Ca level to site of lesion in MRI brain in stroke patients	77
23	Comparing serum ionized Ca to site of lesion in MRI brain in stroke patients	78
24	Correlation between age of stroke patients and their serum levels of magnesium, total and ionized calcium	79
25	Correlation between serum Mg, total and ionized Ca levels and NIHSS on admission of stroke patients	80
26	Correlation between serum Mg, total and ionized Ca levels and Barthel index on admission of stroke patients	80
27	Correlation between serum Mg, total and ionized Ca levels and Roxbury scale on admission of stroke patients	81
28	Correlation between serum Mg, total and ionized Ca levels and NIHSS on discharge of stroke patients	81
29	Correlation between serum Mg, total and ionized Ca levels and Barthel Index on discharge of stroke patients	82
30	Correlation between serum Mg, total and ionized Ca levels and Roxbury scale on discharge of stroke patients	82
31	Correlation of serum Mg level to difference in impairment & dependence of stroke patients	83
32	Correlation of serum T-Ca level to difference in impairment & dependence of stroke patients	84
33	Correlation of serum I-Ca level to difference in impairment & dependence of stroke patients	84

ABSTRACT

Background: Calcium (Ca2_) and magnesium (Mg2_) influence the molecular pathways of ischemic neuronal death Intracellular Ca accumulation leads neuronal damage by triggering the cycle of cytotoxic events. Magnesium is an important co-factor, it inhibits the release of excitatory neurotransmitters at the presynaptic level and blocks voltage-gated calcium channels

Purpose of study: To investigate Magnesium, Total calcium and Ionized calcium levels in serum in the early stage of ischemic stroke. To evaluate the relationship between their serum levels and severity of neurological deficit on admission and short-term prognosis.

Subject and Methods: This study was conducted on 50 Egyptian ischemic stroke patients compared to 25 healthy control subjects. Patients were subjected to clinical evaluation (history& examination). Severity of stroke was assessed by NIHSS, Barthel Index, Oxbury scale. MRI brain was done to all patients.

Results: There was a statistical correlation between serum magnesium level and NIHSS and Oxbury scale on admission but not on follow up after 1 month. A significant correlation is found with changes in scores. Total and ionized calcium serum levels are not statistically correlated with severity of stroke.

Conclusion: A significant reduction of Mg, total and ionized calcium levels were found among ischemic stroke patients. The decrease of the Mg serum level during the acute phase of stroke seems to correspond with worse neurological status. The decrease of the total and ionized calcium serum levels during the acute phase of stroke is associated with worse outcome although this result is not significant.

Keywords:

Ischemic stroke, serum calcium levels, serum magnesium levels, clinical severity).

INTRODUCTION

INTRODUCTION

Stroke is a sudden and devastating illness. WHO defined stroke as 'rapidly developed clinical signs of focal disturbance of cerebral function, lasting more than 24 hours or leading to death, with no apparent cause other than vascular origin (**Huang** *et al.*, **2010**).

There are approximately 152,000 strokes in the UK every year (Townsend *et al.*, 2012). That is more than one every five minutes. There are approximately 1.1 million stroke survivors living in the UK. The costs of stroke are estimated to be between £3.7 billion and £8 billion. These estimated costs include direct health care costs, productivity loses due to mortality and morbidity, and informal care costs (Stroke Association – January 2013).

Cerebral Ischemia (stroke) is one of the foremost causes of high morbidity and mortality for both developed and developing countries. Cerebral ischemia impairs the normal neurological functions, which are triggered by a complex series of biochemical and molecular mechanism (Aggarwal *et al.*, 2010).

In developing country, the stroke patients usually arrive to hospital after 6 hours and then, thrombolytic therapy would not be used and if patients arrive sooner, these drugs are expensive and inaccessible. But neuroprotective agents such as magnesium are accessible, cheaper and more beneficial **avoiding a** potentially dangerous side effect associated with tissue plasminogen activator (tPA) use which is cerebral hemorrhage (**Mousavi** *et al.*, **2004**).

Metal ions are used in biology in many ways and are integrated parts of numerous enzymes and proteins. They function as cofactors in cellular and genetic signaling and, therefore, have important roles in biochemistry ranging from essential to toxic. Perturbed homeostasis of metal ions in stroke has been well recognized for several decades. In cellular and biochemical responses following stroke, metal ion imbalance in neurons is in the center of these cellular events, which is immediate results of stroke and, in turn, leads to the over activation of several deleterious enzymes and signaling process that impairs neuronal function or lead to cell death (Huang et al., 2010).

The most studies and well-characterized metal ion in stroke-associated ionic imbalance is calcium (Ca). The fluctuations of elements homeostasis can be the reason of numerous diseases. Magnesium ions as the essential constituents of ATP -Mg²⁺ complex play the key role in the metabolism of brain tissue (**Kurzepa** *et al.*, **2009**).

The only currently approved medical stroke therapy, tissue plasminogen activator (tPA), is a thrombolytic that targets the thrombus within the blood vessel. Neuro-protective agents, another approach to stroke treatment, have generated as much interest as thrombolytic therapies.

Greater understanding of the pathophysiology of neuronal damage in ischemic stroke has generated interest in neuro-protection as a management strategy. Neuro-protection is an increasingly recognized management strategy in ischemic stroke that promises to assist clinicians in reducing stroke mortality rates and improving the quality of life of survivors (Onwuekwe & Adikaibe, 2012).

Neuro-protection aims to rescue ischemic tissue and improve functional outcome by intervention on the ischemic cascade; and to reduce the intrinsic vulnerability of brain tissue to ischemia. Cellular neuro-protective approaches have focused mainly on blocking excitotoxicity, that is, neuron death triggered by the excitatory transmitter glutamate, and mediated by cytotoxic levels of calcium influx (O'Collins *et al.*, 2006).

The ideal neuroprotective agent for stroke would be inexpensive, readily available, easy to administer and has no significant adverse side effects (Saver & Starkman, 2011).

Magnesium may act as a neuro-protective agent in brain ischemia via several mechanisms. It acts as an endogenous calcium channel antagonist. It inhibits the release of excitatory neurotransmitters such as glutamate. Magnesium antagonizes the NMDA receptor and has a direct vascular smooth muscle relaxant effect. The use of hyperacute magnesium therapy to provide neuro-protection is still under investigation (Jaworski & Brambrink, 2011).

The questionable relationship between serum calcium, magnesium levels and severity of ischemic cerebrovascular stroke deserves to be objectively studied. As establishing a role for these minerals in stroke may help in improving the sequlae of the medical condition through using them as prognosticators of ischemic stroke.