Biodegradable systems for the intra-articular delivery of

intra-articular delivery of "Lornoxicam"

A Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences

(Drug Technology)

By

Hend Abd Allah Hassan El Far

Bachelor of Pharmaceutical Sciences, 2003, Ain Shams University

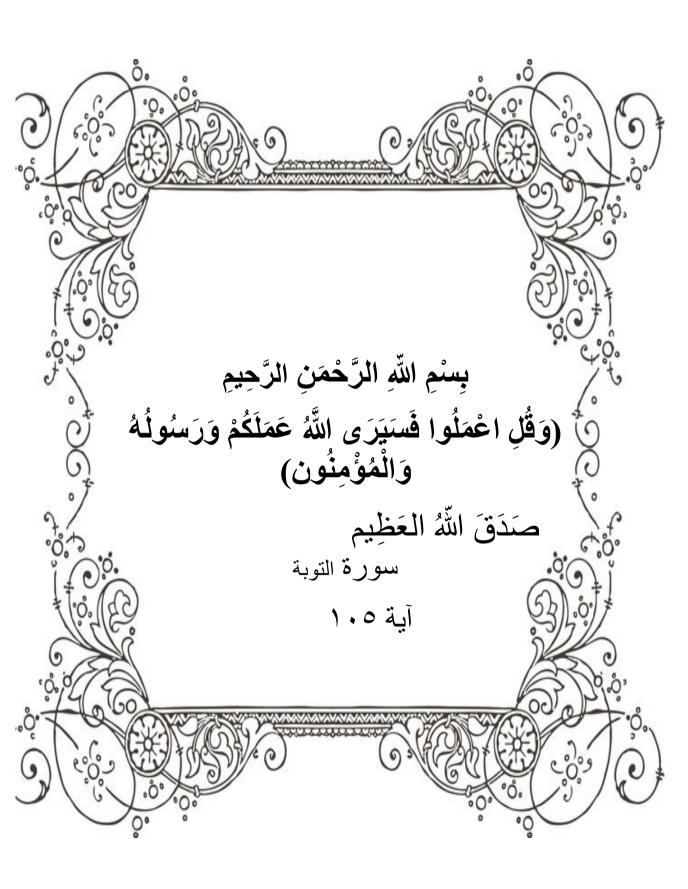
Master Degree in Drug Technology, 2008, Ain Shams University

Assistant lecturer, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Under the supervision of

Prof. Dr. Omaima Ahmed Sammour

Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University


Ass. Prof. Dr. Amany Osama Kamel

Associate professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Cairo

2016

Acknowledgment

First and foremost, thanks to God by the grace of whom this work was completed.

I would like to express my sincere thanks to all my supervisors for their continuous support, patience and valuable guidance throughout the development of this work.

My deepest appreciation to **Prof. Dr. Omaima Ahmed Sammour** Professor of Pharmaceutics and Industrial Pharmacy,
Faculty of Pharmacy, Ain Shams University, for her instructive supervision and generous attitude throughout the development of this work.

I would also like to express my deep thanks and gratefulness to **Ass.Prof. Dr. Amany Osama Kamel** Associate Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her valuable professional guidance, instructive supervision and continuous encouragement throughout the work.

I am especially grateful to **Ass.Prof. Dr. Walid Reda Awadallah**, Associate Professor of Orthopedics, Faculty of Medicine, Cairo University, for his valuable advice and sincere work in performing the *in-vivo* study of this thesis.

I like to thank the staff members of the department of pharmacology, Faculty of pharmacy, Ain shams University for their generous help during the *in-vivo* studies of this thesis.

A very special thank you to my friends in the Pharmaceutics and Industrial pharmacy department, for their valuable help, support and encouragement.

Many friends have helped me stay sane throughout the working years, their support and care helped me overcome setbacks and stay focused on my work. I greatly value their friendship and I deeply appreciate their belief in me.

None of this work would have been possible without the love and patience of my family, being a constant source of love, concern, support and strength...... thank you.

Dedication

To my dearest parents, sisters, husband and my children

List of Contents

List of contents

	To	opic	Page
	•	List of abbreviations	I
	•	List of tables	V
	•	List of figures	X
	•	Abstract	XXI
	•	General introduction	1
	•	Scope of work	27
	_	ter (I): Preparation and characterization of lorno d Chitosan/Tripolyphosphate microspheres	oxicam
-	In	troduction	29
-	Ex	perimental	
	-	Materials	40
	-	Equipment	41
		➤ UV spectrophotometric scanning of lornoxicam in 0.1 N HCL and phosphate buffer saline 7.4 (PBS pH7.4)	n 42
		Construction of calibration curve of lornoxicam in 0.1 N HCL and PBS pH 7.4	42
		 Preparation of lornoxicam chitosan/TPP Microspheres 	43
	-	Preliminary study for the preparation of plain chitosan/ tripolyphosphte (TPP) microspheres by the ionotropic gelation technique	43
(i) (ii))	Effect of chitosan concentration and molecular weighted Effect of chitosan: TPP mass ratio	ght 44 45

(iii) (iv) (v)	Effect of chitosan solution pH Effect of TPP solution pH Effect of crosslinking time	45 45 45
-	Optimization of lornoxicam loaded chitosan microspheres using factorial design experiment	47
	 Characterization of the prepared lornoxicam chitosan/TPP Microspheres 	52
- - -	Particle size determination pH of microspheres solution Determination of lornoxicam entrapment efficiency % (EE%) in the chitosan/TPP microspheres	52 53 53
- - -	In-vitro drug release study Microspheres morphology Differential scanning calorimetry (DSC) Fourier transform infrared (FT-IR) spectroscopy	54 54 55 55
- R	esults and discussion	57
0.	JV spectrophotometric scanning of lornoxicam in 1 N HCL and phosphate buffer saline (PBS pH7.4) Construction of calibration curve of lornoxicam	57 59
- ch	0.1 N HCL and PBS pH7.4 Preliminary study for the preparation of plain itosan/ TPP microspheres by the ionotropic elation technique	62
oi (ii	Effect of chitosan concentration and molecular weight in the particle size of chitosan /TPP microspheres) Effect of chitosan: TPP mass ratio on the particle	62 68
(ii	ze of chitosan /TPP microspheres i) Effect of chitosan solution pH on the particle ze of chitosan /TPP microspheres	72

(iv) Effect of TPP solution pH on the particle size of chitosan /TPP microspheres	75
(v) Effect of crosslinking time on the particle size of chitosan /TPP microspheres	78
- Optimization of lornoxicam entrapment efficiency %	81
(EE%) in chitosan/TPP microspheres using factorial de	
- In-vitro drug release study	96
- Microspheres morphology	104
- Differential scanning calorimetry study (DSC)	106
- Fourier transform infrared spectroscopy (FTIR)	108
- Conclusions	111
Chapter (II): Preparation and characterization lornoxicam liposomes loaded in depot-forming polyimplants	
- Introduction	114
- Experimental	
Materials	125
> Equipment	126
Methodology	127
UV spectrophotometric scanning of lornoxicam in absolute ethanol	127
 Construction of calibration curve of lornoxicam in absolute ethanol 	127
Preparation of lornoxicam multilamellar	128
liposomes	
- Effect of Phosphatidylcholine: Cholesterol	129
(PC:CH) molar ratio and liposomal charge	120
- Effect of stearyl amine concentration	130
- Effect of lipid concentration	130

-	Effect of drug concentration	130
	 Characterization of lornoxicam multilamellar liposomes 	132
-	Determination of lornoxicam entrapment efficiency (EE%) in liposomes	132
_	Particle size determination	133
_	In-vitro drug release study	133
_	Transmission electron microscopy	134
_	Differential scanning calorimetry (DSC)	134
-	Physical stability study	135
	 Preparation of in-situ forming depot polymeric implant 	136
-	Preparation of plain poloxamer P407/P188 in-situ Gels	136
-	Preparation of selected P407/P188 in-situ gels containing sodium hyaluronate (HA)	136
-	Preparation of lornoxicam loaded liposomes in sele P407/P188/HA in-situ gels	cted 137
	Characterization of in-situ forming depot polymeric implants	140
-	Measurement of the reversible sol-gel transition temperature (Tsol-gel)	140
-	Determination of viscosity	140
-	Determination of pH	141
-	Determination of Particle size	141
-	Syringeability measurement	141
-	Transmission electron microscopy	143
-	In-vitro drug release study	143
-	Physical stability study of the prepared lornoxicam liposomes in depot forming polymeric implant	143
_	Results and discussion	145

-	UV spectrophotometric scanning of lornoxicam	145
	in absolute ethanol	
-	Construction of calibration curve of lornoxicam	146
	in absolute ethanol	
-	Characterization of lornoxicam multilamellar	148
	liposomes	
	 Effect of different variables on EE% and 	148
	particle size of lornoxicam multilamellar	
	liposomes	
	 In-Vitro drug release study 	162
	 Transmission electron microscopy 	170
	 Differential scanning calorimetry (DSC) 	172
	 Stability study of the prepared liposomes 	175
_	Characterization of the in-situ forming depot	177
	polymeric implants	
	 Measurement of the reversible sol-gel 	177
	transition temperature (Tsol-gel)	
	 Determination of viscosity 	189
	 Determination of pH 	194
	 Determination of particle size 	194
	 Syringeability measurement 	195
	 Transmission electron microscopy 	196
	 In-vitro drug release study 	198
	 Physical stability study of the prepared 	202
	lornoxicam liposomes in depot forming	
	polymeric implant	
-	Conclusions	203

Chapter (III): *In-vivo* Evaluation of Intra-articular lornoxicam chitosan microspheres and liposomes loaded in depot forming polymeric implants

-	Introduction	209
	Experimental	
	> Materials	216
	> Equipment	217
	> Methodology	
	- Animals	217
	- Induction of knee osteoarthritis	218
	- Clinical assessment of rats having MIA induced osteoarthritis	219
0	Joint swelling measurement	220
0	Measurement of biological marker of inflammation (Interleukin 6, IL6)	220
Э	Histopathologic analysis	221
-	Results and discussion	223
	o Joint swelling measurement	223
	o Measurement of biological marker of inflammation (Interleukin 6, IL6)	230
	o Histopathologic analysis	238
	Conclusions	250

•	Summary	252
•	References	263
•	Arabic summary	1
•	Appendix I: Committee approval for in-vivo stud	lies

List of abbreviations

List of abbreviations

CH Cholesterol

Cox Cyclooxygenase enzyme

Da Dalton

DP Dicetyl phosphate

DSC Differential scanning calorimetry

ECM Extracellular matrix

EE% Entrapment efficiency percent

FDA Food and drug administration

FT-IR Fourier transform infrared spectroscopy

g Gram

GAGs Glycosaminoglycans

GIT Gastrointestinal tract

GRASS Generally regarded as safe substance

h Hour

HA Sodium hyaluronate