

Novel multi-functional finishing of cotton fabrics to impart high performance properties

A Thesis Submitted by

Ghada Mohamed Taha Ibrhaim

(M. Sc. Organic chemistry 2012)

In the Partial Fulfillment of the Requirements for the Degree

of **Doctor of Philosophy (Ph.D)**

To
Chemistry Department
Faculty of Science
Ain Shams University

Approval Sheet

Ph.D. Thesis

Novel multi-functional finishing of cotton fabrics to impart high performance properties

Submitted by

Ghada Mohamed Taha Ibrahim

This thesis has been approved for submission by supervisors:

Thesis supervisors

Prof. Dr. Abd El-Gawad M. Rabia

Faculty of Science - Ain Shams University

Approved

Prof. Dr. Ekhlas Abd Rabio El Alfy National Research Centre

Prof. Dr. Manal Kamal El-Bisi National Research Centre

Dr. Hassan Mohamed Abd El Mohsen Ibrahim National Research Centre

> Head of Chemistry Department Prof. Dr: Hamed Ahmed Derbala

ACKNOWLEDGMENTS

First thanks to **ALLAH** who helps us to fulfill this work.

I wish to express my sincere gratitude to **Prof. Dr. Abd El-Gawad Mohamed Rabia**, Professor of organic chemistry,

Faculty of Science, Ain Shams University, for his support,

enthusiasm, valuable discussion, criticism and keen interest in

the present work.

I am greatly indebted to **Prof. Ekhlas Abd Rabio El Alfy**,

Professor of Textile Chemistry and Technology, National

Research Centre, for her direct supervision, her valuable guidance, discussion, advice during the entire work. The author is thanking her effort in writing and revision the thesis.

Thanks, appreciation and gratitude are due to **Prof. Dr. Manal Kamal El-Bisi,** Prof. of Textile Chemistry and Technology, Textile Research Division, National Research Centre, for her direct supervision, sound advices, valuable discussion and keen interest throughout the entire work. Indeed,

her continuous encouragement, keen interest and enthusiasm were behind attaining my endeavour with great confidence.

I wish to express my warm and sincere thanks and appreciation to Dr. Hassan Mohamed Abd El Mohsen Ibrahim, researcher of Textile Chemistry and Technology, Textile Research Division; National Research Centre, for his useful suggestion throughout good advices, and valuable discussion that help me to accomplish my thesis successfully.

I would like to thank the **Textile Research Division**,

National Research Center, and the faculty of science, Ain

Shams University, for all the facilities provided.

Finally, I would like to thank my family for their love, support, patience and devotion throughout my undergraduate and graduate career.

Ghada mohamed taha

Contents

Acknowledgments	
Table of Contents	
List of Figures	
List of Tables	
Aim of the work	
Part (1): introduction and literature survey	
1.1. Cellulose	1
1.2. Chitin and Chitosan	5
1.2.1. Chitin	5
1.2.2. Chitosan	6
1.2.2.1 Chitosan Production	7
1.2.2.2 Chitosan properties	9
1.2.3 Antimicrobial activity	10
1.2.4 Applications of chitosan	13
(A) Antibacterial uses	14
(B) Hydrophobicity	18
1.3. Chitosan nanoparticles	20
1.3.1. Preparation of Chitosan nanoparticles	21
1.3.1.1. Ionic Gelation Method	21
1.3.1.2 Spray drying Method	24
1.3.1.3 Desolvation/Precipitation method	24

1.3.1.4 Covalent Crosslinking	25	
1.3.1.5 Micro-emulsion method	26	
1.3.1.6 Emulsification solvent diffusion method	27	
1.3.1.7 Polyelectrolyte complex (PEC) or Molecular	28	
Self-Assembly (MSA)		
1.3.2. Loading of drug into chitosan nanoparticles	28	
1.3.3. Utilization of chitosan nanoparticles (CSNPs)	29	
1.3.3.1. Drug Delivery	30	
1.3.3.2. Antibacterial activity of chitosan	36	
nanoparticles		
1.4. Process of fabrics	40	
1.4.1 Antimicrobial finishing	41	
(a) Quaternary Ammonium Compounds (QASs)	43	
(b)N-halamines	43	
(c) Nanoparticles of Noble Metals and Metal Oxides	44	
(D) Chitosan and chitosan derivatives	44	
(e)Triclosan	44	
(f) Cyclodextrins (CD)	45	
1.4.2 Water repellent finishing	45	
Part (2): Chitosan nanoparticles loaded antibiotics as I		
Delivery bio material		
Abstract	50	

2.1 Introduction	51
2.2. Experimental	54
2.2.1. Materials	55
2.2.2. Methods	56
2.2.2.1. Preparation of chitosan nanoparticles	56
2.2.2.2. Preparation of Antibiotic-loaded chitosan	56
nanoparticles	
2.2.3. Characterization of Chitosan Nanoparticle	57
and it's loaded	
2.2.4. Evaluation of Antibacterial Activity in vitro	57
2.2.4.1. Materials	<i>=</i> 7
2.2.4.2. Test Method	57
	58
2.3 Result and discussion	58
2.3.1. Preparation and characterization of chitosan	58
nanoparticles	
2.3.1.1. Effect of chitosan concentration on	60
nanoparticle size	
2.3.1.2. Effect of concentration of sodium	63
tripolyphosphate	
2.3.2. FT-IR Analysis	66

2.3.3 Antibacterial Activity of chitosan	69
nanoparticles and its loaded antibiotic	
Part (3): Improvement antimicrobial properties of o	otton
based fabrics	
Abstract	74
3.1 Introduction	74
3.2. Experimental	77
3.2.1 Materials	77
3.2.2 Methods	78
3.2.2.1 Preparation of chitosan nanoparticles	78
(CSNPs)	
3.2.2.2. Preparation of Antibiotic-loaded chitosan	78
nanoparticles:	
3.2.2.3. Finishing of Fabrics with antibiotic-CSNPs	78
Poly load:	
3.2.3. Characterizations and antibiotic-CSNPs Poly	79
load its treated fabrics:	
3.2.4. Evaluation of Antibacterial Activity in vitro	80
3.2.4.1. Materials	80
3.2.4.2. Test method	81
3.3. Result and discussion	82

3.3.1. Physicochemical characterizations of		
nanoparticles		
3.3.2 Finishing of COT and COT/PET Fabrics with		
antibiotic-CSNPs Poly load		
3.3.3 FTIR Spectroscopy	98	
3.3.4. Thermal gravimetric analysis	102	
3.3.5. Scanning electron microscope	107	
3.3.6. Antibacterial activity	116	
Part (4): Super hydrophobic of cotton fabrics via gr	reen	
techniques		
Abstract	130	
4.1 Introduction	131	
4.2. Experimental	134	
4.2.1Materials	134	
4.2.2. Methods	135	
4.2.2.1 Preparation of chitosan nanoparticles	135	
4.2.2.2 preparations of bee's wax/chitosan and		
nano-chitosan emulsion		
4.2.2.3. Preparation of silica nanoparticle	135	
4.2.2.4 Treatment of fabrics with bee's wax/		
chitosan emulsion/silica nanoparticle		
4.2.2.5 Measurement and analysis		

4.2.2.5.1 Transmission electron microscope (TEM)	136
4.2.2.5.2. Contact angle	136
4.2.2.5.3. FT-IR	137
4.2.2.5.4. Antimicrobial Activity in vitro	137
4.2.2.5.4.1Test method	137
4.2.2.5.5 Scanning electron microscopy (SEM)	138
4.2.2.5.6. Energy Dispersive X-ray photoelectron	138
spectroscopy (EDX)	
4.2.2.5.7. Tensile strength	138
4.2.2.5.8. Water permeability	138
4.2.2.5.9. Air permeability	139
4.2.2.5.10. Surface Roughness	139
4.2.2.5.11 Thermal gravimetric analysis	139
4.3 Result and discussion	139
4.3.1Bee's wax concentration	140
4.3.1.1. Effect of bee's concentration on the	140
Roughness and the contact angle	
4.3.1.2 Effect of bee's wax on antibacterial activity	143
4.3.1.3 Effect of concentration of bee's wax of	144
chitosan/ bee's wax emulsion on physical and	
mechanical properties	
4.3.2 Effect of chitosan concentration	146

4.3.2.1Effect of chitosan concentration on the	146
roughness and the contact angle	
4.3.2.2 Effect of chitosan concentration on	149
antibacterial activity	
4.3.2.3 Effect of chitosan concentration of chitosan/	151
bee's wax, nano-chitosan/ bee's wax emulsion on	
physical and mechanical properties	
4.3.3 Characterization of Nano silica	153
4.3.3.1 TEM of silica Nanoparticle	154
4.3.3.2 FTIR of silica nano particle	155
4.3.4 Scanning electron microscope of treated	157
fabrics	
4.3.5 Energy-dispersive X-ray spectroscopy	163
4.3.6 FTIR	166
4.3.7 Thermal gravimetric analysis	170
5. References	175
6. English summary	238
7. Arabic summary	

List of figures

Figure(1): Chemical structure of cellulose	1
Figure(2): Chemical structure of chitin and chitosan	6
Figure(3): Manufacture process of chitin, chitosan, and chitosan	8
derivatives	
Figure(4): Chitosan's versatility at low pH (less than about 6) and at	9
higher pH (above about 6.5).	
Figure(5): The reactive group of chitosan	10
Figure(6): antimicrobial mechanism of chitosan and its derivatives.	11
Figure(7): Metal-Chitosan modal	13
Figure(8): The reaction of chitosan with cellulose using citric acid,	16
NaH ₂ PO ₄ , and UV-irradiation.	
Figure(9): Ionic gelation mechanism of chitosan nanoparticle	22
Figure(10): chitosan –TPP complex formed as result ionic cross-	23
linked	
Figure(11): Chitosan –Ciprofloxacin synthesis	36
Figure(12): Superhydrophobic surfaces produced through several	47
techniques	
Figure(13): Formation of the chitosan-tri polyphosphate complex by	59
ionotropic gelation. (a) Schematic illustration of the chitosan-TPP	
complex and (b) TEM image of chitosan nanoparticles with 25 nm	
diameter.	
Figure(14): TEM image of nano-chitosan prepared at different	63
concentration of chitosan and its nano size range	