TECHNOLOGICAL STUDIES ON MOZZARELLA CHEESE FROM EGYPTIAN BUFFALO MILK

BY

WAFAA MAHMOUD SALAMA MANSOUR

B.Sc. Agric. Sc. (Dairy Science), Cairo University, 1993 M.Sc. Agric. Sc. (Dairy Science), Cairo University, 2000

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Dairy Science and Technology)

Food Science Department Faculty of Agriculture Ain Shams University

Approval Sheet

TECHNOLOGICAL STUDIES ON MOZZARELLA CHEESE FROM EGYPTIAN BUFFALO MILK

BY

WAFAA MAHMOUD SALAMA MANSOUR

M.Sc. Agric. Sc. (Dairy Science), Cairo University, 1993 M.Sc. Agric. Sc. (Dairy Science), Cairo University, 2000
This thesis for Ph.D. degree has been approved by:
Prof. Dr. Laila A. El-Koussy
Professor emeritus of Dairy Science and Technology, Animal Production Research Institute, Agricultural Research Center
Prof. Dr. Abdel-Moneim E. Hagrass
Professor of Dairy Science and Technology, Fac. of Agric., Ain Shams Univ.
Dr. Rezk A. Awad
Associate Prof. of Dairy Science and Technology, Fac. of Agric., Ain Shams Univ.
Prof. Dr. Laila B. Abdel-Hamid

Date of Examination: / /2005

TECHNOLOGICAL STUDIES ON MOZZARELLA CHEESE FROM EGYPTIAN BUFFALO MILK

BY

WAFAA MAHMOUD SALAMA MANSOUR

B.Sc. Agric. Sc. (Dairy Science), Cairo University. 1993 M.Sc. Agric. Sc. (Dairy Science), Cairo University, 2000

Under the supervision of:

Prof. Dr. Laila B. Abdel-Hamid

Prof. Emeritus of Dairy Chemistry and Technology, Dept. of Food Science, Fac. of Agric., Ain Shams Univ.

Dr. Rezk A. Awad

Associate Prof. of Dairy Science and Technology, Dept. of Food Science, Fac. of Agric., Ain Shams Univ

Dr. Mostafa A. Zedan

Prof. of Dairy Science and Technology, Dairy Research Department, Food Technology Institute, Agricultural Research Center

ACKNOWLEDGEMENT

I gratefully wish to express my deepest gratitude and infinite thanks to major Prof. Dr. Laila B. Abdel-Hamid Prof. of Dairy Chemistry and Technology and Dr. Rezk A. Awad associate Prof. of Dairy science and Technology, Food Sci. Dept., Faculty of Agriculture, Ain Shams University, for suggesting the problems, supervising and guiding the work as well as for their continuous assistance throughout the investigation and writing course of the manuscript. They learned me several things which I never have the opportunity to learn. It is too difficult for me to express my deep respect to them.

I would like also to express my graditute and appreciation to Dr. Moustafa A. Zedan Head of Dairy Research Department, Food Technology Institute, Agricultural Research Center, for his help offering facilities to accomplish lab. work.

Thanks to all staff members of Food Science Department, Fac. of Agric., Ain Shams University and members of Food Technology Research Institute. At Agricultural Research Center for their encouragement and help.

ABSTRACT

Wafaa Mahmoud Salama Mansour. Technological Studies on Mozzarella Cheese From Egyptian Buffalo Milk. Unpublished Doctor of Philosophy Thesis, Ain Shams University, Faculty of Agriculture, Food Science Department, (2005).

This study was planned to improve the functional properties of Egyptian buffalo milk Mozzarella through either lowering Ca++ content by using chelating salts or modifying the casein micelle in the milk with proteolytic agent, or by both methods together. The research was carried out into three parts. In the first part, sodium polyphosphate (SPP) as calcium chelating salt was added either to buffalo milk before coagulation (section, A) in ratios of 0.025%, 0.050% and 0.075% or to cheese kneading water (section, B) in ratios of 0.5%, 1.0 % and 1.5%. Samples of resultant Mozzarella cheese were analyzed for chemical, physical and sensory properties when fresh and weekly up to four weeks during storage at refrigerator (5±2°C). Cheese yield increased with adding SPP into milk or kneading water by different proportion being affected with SPP ratio. Addition of SPP to buffalo milk or kneading water enhanced to certain extent the meltability and stretchability and decreased the firmness and free oil of Mozzarella. The microstructure of buffalo Mozzarella revealed that addition of SPP resulted in better protein solubility with much more fiberness and open structure. The sensory quality of buffalo Mozzarella was improved with main reflection on body and texture of cheese with adding SPP in milk or kneading water.

In the second part of study, buffalo milk was treated with proteolytic enzyme (protease) in ratios of 16, 32 and 48 units. Treating buffalo milk with protease significantly increased the moisture content of cheese and therefore the cheese yield increased. Meltability and stretchability were improved by treating the milk with protease but the addition caused a slightly higher oil separation. Buffalo Mozzarella had better fiberness structure and higher waterness of body with treating the milk by protease. The best buffalo Mozzarella was produced by treating the milk with up to 32 units of protease.

The third part of the research was conducted to improve functional properties of buffalo Mozzarella using combinations of calcium chelating salt (SPP) proteolytic agent (protease). The synergistic effect of both SPP and protease on buffalo Mozzarella characteristics was more obvious than the effect of each separately.All treatments showed better meltability and stretchability with separation lower oil and all were organoleptically acceptable. Buffalo Mozzarella with best quality can be produced using protease and SPP in combination of 16 units + 0.025 % respectively.

Key words: Mozzarella–Buffalo–Functional properties-Yield–Meltability–Stretchability–Microstructure.

CONTENTS

				page
INTR	ODUC	ΓΙΟΝ	T	1
REVI	EW OI	FLIT	TERATURE	5
1-	Milk type as affecting properties of Mozzarella cheese			
2-	Milk	treat	ments in Mozzarella cheese manufacture	10
	A) St	anda	rdization of milk	10
	В) Не	eat T	reatment	11
	C) Th	e us	e of starter culture	15
3-		•	ng salts and enzymes in Mozzarella cheese	18
			ire	
			fying salts	18
			es	22
			METHODS	25
1- Ma				25
1-1	Raw milk			25
1-2	Starter culture			
1-3	Rennet			25
1-4	Sodium Chloride			25
1-5	Protes	ase e	nzyme	25
1-6	Sodium polyphosphate			25
2- Me	ethods			26
2.1		Mai	nufacture of Mozzarella cheese	26
2.2		Met	thods of analyses	27
	2.2.1	Che	emical analysis	27
		1-	Moisture, fat, salt and soluble nitrogen (SN)	27
			contents	
		2-	Lactose content	27
		3-	Titratable acidity and ash content	27
		4-	pH value	27
		5-	Calcium content	27
		6-	Total nitrogen content	28

	7- Total volatile fatty acids value	28		
	8- Polyacrylamide gel electrophoresis	29		
2.2.2	30			
	1- Meltability	30		
	2- Oil separation	30		
	3- Free oil test	31		
	4- Firmness measurement	32		
	5- Stretchability	32		
	6- Cheese microstructure	34		
2.2.3	Organoleptic evaluation	34		
2.2.3	Statistical analysis	35		
RESULTS	AND DISCUSSION			
Part I: Re	eduction of calcium in buffalo Mozzarella using	36		
	polyphosphate			
Section A	Supplementig buffalo milk with sodium	36		
	polyphosphate			
	Chemical composition of milk, curd, whey and			
	kneading water of buffalo Mozzarella cheese			
	treatments			
	Cheese yield, recovery and losses of milk constituents	39		
	Chemical composition of buffalo Mozzarella	42		
	cheese	72		
	Physical properties of Mozzarella cheese	68		
	Mozzarella cheese microstructure	83		
	Organoleptic evaluation	86		
Section B	Stretching buffalo Mozzarella curd in water	90		
	contains sodium polyphosphate			
	Chemical composition of milk, curd, whey and	91		
	kneading water of buffalo Mozzarella cheese			
	treatments			
	Cheese yield, recovery and losses of milk	93		

	constituents
	Chemical composition of buffalo Mozzarella 98 cheese.
	Physical properties of Mozzarella cheese 11
	Mozzarella cheese microstructure
	Organoleptic evaluation
Part I I	Modification of buffalo casein micelles size 13
1 41 (1 1	of Mozzarella cheese by treating milk with
	protease
	Chemical composition of milk curd, whey and 14
	kneading water of buffalo o treatments
	Cheese yield, recovery and losses of milk 14
	constituents
	Chemical composition of buffalo Mozzarella 14
	cheese.
	Physical properties of Mozzarella cheese 17
	Mozzarella cheese microstructure 18
	Organoleptic evaluation
Part I I I	Improving buffalo Mozzarella characteristics 19
	by the protease and sodium
	polyphosphate
	Chemical composition of milk, curd, whey and 19
	kneading water of buffalo Mozzarella cheese
	treatments
	Cheese yield, recovery and losses of milk 19
	constituents
	Chemical composition of buffalo Mozzarella 19
	cheese
	Physical properties of Mozzarella cheese 22
	Mozzarella cheese microstructure 24
	Organoleptic evaluation
SUMMARY	AND CONCLUSION 24

REFERANCES	
ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	Chemical composition of milk, curd, whey and kneading water of buffalo Mozzarella cheese treatments as affected by supplementing milk with sodium polyphosphate (SPP)	38
2	Cheese yield, recovery and losses of milk constituents in whey and kneading water during manufacture of buffalo Mozzarella cheese treatments.	40
3	Moisture, fat and F/DM contents of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.	43
4	Lactose, acidity and pH values of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.	47
5	Ash content, salt and salt / moisture percent of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.	53
6	Total calcium content and total calcium / total protein ratio (TC/TP) of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), when fresh and after 28 days of storage at 5±2°C.	57
7	Total nitrogen (on dry matter basis) and Soluble nitrogen / Total nitrogen content of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.	60

- 8 Total volatile fatty acids value (TVFA) of buffalo 66 Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 9 Meltability and penetration of buffalo Mozzarella 69 cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Oil separation and free oil of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Stretchability (mm) of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Organoleptic evaluation of buffalo Mozzarella cheese as affected by supplementing milk with sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 13 Chemical composition of milk, curd, whey and 92 kneading water of buffalo Mozzarella cheese treatments, stretched in water contains sodium polyphosphate (SPP).
- 14 Cheese yield, recovery and losses of milk constituents 94 in whey and kneading water during manufacture of buffalo cheese treatments.
- Moisture, fat and F/DM contents of buffalo Mozzarella 96 cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.

- Lactose, Acidity and pH values of buffalo Mozzarella 100 cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 17 Ash, salt and salt/moisture percent of buffalo 105 Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Total calcium content and total calcium/ total protein 109 ratio (TC/TP) of buffalo Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), when fresh and after 28 days of storage.
- 19 Total nitrogen (on dry matter basis) and soluble 112 nitrogen/total nitrogen content of buffalo Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Total volatile fatty acids value (TVFA) of buffalo 116 Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 21 Meltability and penetration of buffalo Mozzarella 119 cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- Oil separation and free oil of buffalo Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 23 Stretchability (mm) of buffalo Mozzarella cheese 131 stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.

- Organoleptic evaluation of buffalo Mozzarella cheese stretched in water contains sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.
- 25 Chemical composition of milk, curd, whey and 141 kneading water of buffalo Mozzarella cheese treated with protease enzyme.
- 26 Cheese yield, recovery and losses of milk constituents 143 in whey and kneading water of buffalo Mozzarella cheese treated with protease enzyme.
- 27 Moisture, fat and F/DM contents of buffalo Mozzarella 145 cheese treated with protease enzyme during refrigerated storage at 5±2°C.
- The lactose, Acidity and pH values of buffalo 149 Mozzarella cheese treated with protease enzyme, during refrigerated storage at 5±2°C.
- Ash, salt and salt/moisture ratio of buffalo Mozzarella 155 cheese treated with protease enzyme, during refrigerated storage at 5±2°C.
- Total calcium content and total calcium/ total protein 159 ratio (TC/TP) of buffalo Mozzarella cheese treated with protease enzyme, when fresh and after 28 days of storage at 5±2°C.
- 31 Total nitrogen (on dry matter basis) and soluble 162 nitrogen/total nitrogen content of buffalo Mozzarella cheese treated with protease enzyme, during refrigerated storage at 5±2°C.
- Total volatile fatty acids value (TVFA) of buffalo 166 Mozzarella cheese treated with protease enzyme, during refrigerated storage at 5±2°C.

33 172 Meltability and penetration values buffalo of Mozzarella cheese treated with protease enzyme, during refrigerated storage at 5±2°C. 179 34 Oil separation and free oil of buffalo Mozzarella cheese treated with protease enzyme, during refrigerated storage at $5\pm2^{\circ}$ C. 35 184 Stretchability (mm) of buffalo Mozzarella cheese treated with protease enzyme, during refrigerated storage at $5\pm2^{\circ}$ C. 190 36 Organoleptic evaluation of buffalo Mozzarella cheese treated with protease enzyme, during refrigerated storage at 5±2°C. Chemical composition of milk, curd, whey and 195 37 kneading water of buffalo Mozzarella cheese as affected by protease enzyme and sodium polyphosphate (SPP). Cheese yield, recovery and losses of milk constituents 38 197 in whey and kneading water of buffalo Mozzarella cheese as affected by protease enzyme and sodium polyphosphate (SPP). Moisture, fat and F/DM contents of buffalo Mozzarella 39 200 cheese as affected by protease enzyme and sodium polyphosphate (SPP), during refrigerated storage at 5±2°C. The lactose, Acidity and pH values of buffalo 40 204 Mozzarella cheese as affected by protease enzyme and sodium polyphosphate (SPP), during refrigerated storage at 5±2°C.

Ash, salt and salt/moisture ratio of buffalo Mozzarella

cheese as affected by protease enzyme and sodium polyphosphate (SPP), during refrigerated storage at

41

5±2°C.

210