FACTORS INFLUENCING THE PERFORMANCE OF HORIZONTAL FLOW CONSTRUCTED WETLAND FOR MUNICIPAL WASTEWATER TREATMENT

Submitted By Mohamed Ali Ibrahim Elekhnawy

B.Sc. of Science (Chemistry), Faculty of Science, Al-Azhar University, 2005

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2017

APPROVAL SHEET

FACTORS INFLUENCING THE PERFORMANCE OF HORIZONTAL FLOW CONSTRUCTED WETLAND FOR MUNICIPAL WASTEWATER TREATMENT

Submitted By

Mohamed Ali Ibrahim Elekhnawy

B.Sc. of Science (Chemistry), Faculty of Science, Al-Azhar University, 2005

A thesis submitted in Partial Fulfillment

Of

The Requirement for the Master Degree

In

Environmental Sciences

Department of Environmental Basic Sciences

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Nabil Mahmoud Abdel Monem

Prof. of Chemical Engineering Faculty of Engineering Cairo University

2-Prof. Dr. Salah A. Abo-El-Enein (D.Sc)

Prof. of Physical Chemistry and Building Materials Faculty of Science Ain Shams University

3-Prof. Dr. Sohair Imam Abou-Elela

Prof. of Wastewater Treatment Technology & Environmental Studies Water Pollution Research Department National Research Center

4-Prof. Dr. Magdy Tawfik Khalil

Prof. of Aquatic Ecology – Department of Zoology Faculty of Science Ain Shams University

FACTORS INFLUENCING THE PERFORMANCE OF HORIZONTAL FLOW CONSTRUCTED WETLAND FOR MUNICIPAL WASTEWATER TREATMENT

Submitted By Mohamed Ali Ibrahim Elekhnawy

B.Sc. of Science (Chemistry), Faculty of Science, Al-Azhar University, 2005

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Basic Science

Under The Supervision of:

1-Prof. Dr. Magdy Tawfik Khalil

Prof. of Aquatic Ecology – Department of Zoology Faculty of Science Ain Shams University

2-Prof. Dr. Sohair Imam Abou-Elela

Prof. of Wastewater Treatment Technology & Environmental Studies Water Pollution Research Department National Research Center

2017

ACKNOWLEDGEMENTS

First of all, I would like to thank **ALLAH**, the most merciful and compassionate making all this work possible and for granting me with the best family, friends and teachers that many people wish and dream of having.

I wish to express my gratitude to my supervisor **Prof. Dr. Sohair Imam Abou-Elela**, Water Pollution Research Department, National Research Center, for her guidance, motivation, and support throughout my master thesis. Her insight helped me to finish this research in such a good form. I am very thankful that I become one of her students. I would like also to express my deep thanks to **Prof. Dr. Magdy Tawfik Khalil**, Zoology Department, Faculty of Science, Ain Shams University, for his great valuable supervision.

I would like to acknowledge the support I received from Ain Shams University, Institute of Environmental Studies and Research, National Research Center and Holding Company for Water and Wastewater.

Finally, I would like to express my deep gratitude to my friends, colleagues and family for their unconditional love, encouragement and support by any possible means, without which this work would not be possible.

Mohamed Ali Elekhnawy

ABSTRACT

This study aims to optimize the different operating conditions for the treatment of municipal wastewater using HFCW planted with *Canna lily*, *Phragmites australis* and *Cyprus papyrus*.

Three separates basins of a horizontal flow subsurface constructed wetland (HFCW) pilot plants were designed, implemented and operated at the same operating conditions for almost one year for the treatment of real municipal wastewater. The first Basin (A) was planted with Canna lily, the second basin (B) with *Pharagmites australis* and the third basin (C) with Cyprus papyrus. To evaluate the performance of each basin at different operating conditions, such as hydraulic loading rate (HLR), hydraulic retention time (HRT) and organic loading rate (OLR), three sampling points at a distance 10 m apart from each others were established along each basin to represents different operating conditions. The results indicated that the pollutant removal efficiencies decreased with increase HLR. The removal efficiency at the first sampling point was the lowest for each basin. The best removal efficiency was at the third sampling point for each basin. The average removals of COD, BOD and TSS in basin A at point (A3) were 75.5 %, 83.4 % and 83.5 %, it reached 84.3%, 88.6 % and 89.1% in basin B at point (B3) while it reached 80.4%, 86.9 % and 87.5 % in basin C at point (C3). These results indicated that the *Pharagmites australis* proved to be more efficient in the removal of the organic matter compared to other plants.

The results indicated that nitrification process was influenced by the type of plants used. The removal of ammonia reached 29.5 % in basin (A) planted with *Canna lily*, 62.5% in basin (B) planted with *Pharagmites australis*, while in basin (C) planted with *Cyprus papyrus*, it reached 68.7 %. *Cyprus papyrus* proved to be more efficient compared to other plants for nitrification; this may

be due to that *Cyprus papyrus* root structures provided more microbial attachment sites, sufficient wastewater residence time, trapping and settlement of suspended particles, more surface area for pollutant adsorption and uptake accounting for its high treatment efficiency. In addition, *Cyprus papyrus* exhibited a significantly large number of adventitious roots and nitrifying bacteria attached to *Cyprus papyrus* and the corresponding nitrification activities were consistent with this finding.

Therefore, it is recommended that to use a combined mixture of *Pharagmites australis* and *Cyprus papyrus* in designing the HFCW.

Keywords: Constructed wetland, horizontal flow, wastewater, treatment, hydraulic loading rate, hydraulic retention time, *Canna lily*, *Pharagmites australis*, *Cyprus papyrus*.

CONTENTS

Abstract	
List of Tables	IV
List of Figures	\mathbf{V}
List of Abbreviations	VII
Introduction and Literature Review	1
1.1 Background	1
1.2 Application of CWs for wastewater treatment	4
1.2.1 The advantages and the disadvantages of CWs	5
1.2.2 Classification of CWs	6
1.2.3 Free water surface CWs (FWSF)	7
1.2.4 Subsurface flow CWs (SSF)	8
1.2.4.1 Types of SSFCWs	10
(A) Vertical flow constructed wetlands (VFCW)	10
(B) Horizontal flow constructed wetlands (HFCW)	12
(C) Hybrid constructed wetlands	13
1.2.5 Composition of constructed wetlands	13
1.2.5.1 Macrophyts	13
1.2.5.2 Substrate	15
1.2.5.3 Microorganisms	16
1.2.6 Removal mechanisms in CWs	16
1.2.6.1 Mechanisms of suspended solids removal	16
1.2.6.2 Mechanisms of organic matters removal	17
1.2.6.3 Mechanisms of nutrients (Nitrogen &Phosphorus)	19
removal	
Nitrogen	19
Phosphorus	21
1.2.6.4 Mechanisms of pathogens removal	21
1.2.7 Impact of design on the performance of wetland systems	23
1.3 Objectives	30
1.3.1 Aim of the Study	30
1.3.2 Specific objectives	30

Materials and Methods	31
2.1 Existing horizontal flow constructed wetland (HFCW)	31
2.1.1 Engineering discretion of (HFCW)	32
2.1.2 Modification of design of the existing HFCW	33
2.2 Plantation	37
2.2-1 Plant analysis	37
2.3 Sampling	37
2.3-1 Sampling points	37
2.3-2 Sampling program	37
2.4 Performance evaluation of the HFCW	39
2.4.1 Physico-chemical analysis	39
2.4.2 Heavy metals analysis	40
2.4.3 Bacteriological test	40
Presumptive test for (TC, FC and E.col)	41
Confirmed test	41
Total Coliform (TC)	41
Fecal Coliform (FC)	42
Escherichia Coli (E-Coli) detection	42
2.5 Calculations	42
2.5.1 Calculation of hydraulic retention time (HRT) and hydrauli	42
c loading rate (HLR)	
2.5.2 Calculation of organic loading rate (OLR)	43
2.5.3 Calculation of removal rate	43
2.5.4 Calculations of biomass yield and plant uptake	43
2.6 Statistical analysis	44
Results and Discussion	
3.1 Characterization of influent wastewater	45
3.1.1 Physico-chemical characteristics	45
3.1.2 Bacteriological characteristics	48
3.2 Effect of different design parameters on the performance of	49
HFCW	
3.2.1 Effect of HLR on the performance of the basin (A) planted	50
with canna	

3.2.1.1 Reduction of TSS, BOD and COD	50
3.2.1.2 TKN and ammonia removal	55
3.2.1.3 Nitrification process and ammonia removal	57
3.2.1.4 Total phosphorus removal	58
3.2.1.5 Microbial removal	59
3.2.2 Effect of HLR on the performance the basin (B) vegetated	61
with Phragmites australis	
3.2.2.1 TSS, BOD and COD removal	61
3.2.2.2 TKN and ammonia removal	65
3.2.2.3 Total phosphorus removal	68
3.2.2.4 Microbial removal	68
3.2.3 Effect of HLR on the performance of HFCW in the basin	70
(C) vegetated with Cyprus papyrus	
3.2.3.1 Reduction of TSS, BOD and COD	70
3.2.3.2 TKN and ammonia removal	72
3.2.3.3 Total phosphorus removal	74
3.2.3.4 Microbial removal	74
3.3 Overall efficiency of HFCWs at the final HLR, OLR and	76
HRT	
3.3.1 Removal of organic matter	76
3.3.2 Suspended solids removal and dissolved solids	79
transformation	
3.3.3 Nitrogen removal and transformation	81
3.3.4 Total phosphorus removal	85
3.3.5 Reduction of bacterial indicators of pollution	86
3.4 Plants uptake and biomass production	88
Conclusion and Recommendations	93
4.1 Conclusions	93
4.2 Recommendations	95
Summary	96
References	104
Arabic Abstract	
Arabic summary	

List of Tables

Table No.		Page
Table (2.1)	Design criteria and operating conditions for the three basins of HFCW	36
Table (2.2)	Sampling points of the treatment system	38
Table (3.1)	Physico-chemical characterization of influent wastewater	45
Table (3.2)	Average results of heavy metals concentrations in influent wastewater	47
Table (3.3)	Main microbiological characteristics of influent wastewater	48
Table (3.4)	The design criteria and operating conditions for the three basins of HFCW	49
Table (3.5)	Physico-chemical characteristics of the effluents at different HLR along basin (A)	51
Table (3.6)	Average bacterial counts in effluent of HFCW at points (A1, A2 and A3)	60
Table (3.7)	Physico-chemical characteristics of the treated effluents at different HLR along the basin (B) planted with <i>Phragmites australis</i>	63
Table (3.8)	Average bacterial counts in effluent of basin (B) planted with <i>Phragmites australis</i> at different HLRs.	69
Table (3.9)	Physico-chemical characteristics of the treated effluents at different HLRs along the basin planted with <i>Cyprus</i>	71
Table (3.10)	Average bacterial counts in effluent of HFCW at (C1, C2 and C3) points	75
Table (3.11)	Average residual values of BOD5 and COD in basins (A, B and C)	76
Table (3.12)	Average concentration of pathogens in effluent wastewater of the three basins	87
Table (3.13)	Plants heights in HFCW during the study period (12 months)	90
Table (3.14)	Average concentrations of heavy metals accumulated in the roots of the three plants in HFCW	92