Effect of Various Light Sources on the Kinetics of Polymerization Shrinkage Strain, and Degree of Conversion of Low Stress Induce Composites

Thesis

Submitted to the Faculty of Dentistry, Ain Shams
University in Partial Fulfillment of the Requirements for
the PhD Degree in Operative Dentistry

By

Manal Mohammed Diab

B.D.S, Cairo University, (1999)

M.S.C, Cairo University, (2007)

بِسْمِ الله الرَّحْمَنِ الرَّحِيمِ "قَالُوا سُنِجَانَكَ لا عِلْمَ لَنَا لِّلا مَا عَلَّمْتَناً إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ" إِنَّكَ أَنْتَ الْعَلِيمُ الْحَكِيمُ"

صدق الله العظيم سورة البقرة الأية (٣٢)

Dr. Mokhtar Nagy Ibrahim

Professor of Operative Dentistry Faculty of Dentistry, Ain Shams University

Dr. Omaima Hassan Ghallab

Associate Professor of Operative Dentistry Faculty of Dentistry, Ain Shams University

Dr. Mohammed Hussein Zaazau

Professor of Restorative Dentistry
Restorative and Dental Materials Department
National Research Centre

Acknowledgement

I am deeply indebted and had a great honor to undertake this research under the valuable supervision of **Dr. Mokhtar Nagy Ibrahim** Professor of Operative Dentistry Faculty of Dentistry, Ain Shams University, (God bless his soul) who gave me the opportunity to learn from his creative advices and expanded experience. His constant support, encouragement and willingness to teach and educate had pushed me forward throughout this work.

No word can fulfil the feeling of gratitude and respect I carry to **Dr. Omaima Hassan Ghallab** Associate Professor of Operative Dentistry Faculty of Dentistry, Ain Shams University for all her efforts without which, this work could not be achieved. 1 thank her for her faithful supervision, constructive guidance and real interest in the progress of this work.

I also awe a great debt of gratitude to **Dr. Mohammed Hussein Zaazou** Professor of Restorative Dentistry, Restorative and
Dental Materials Department, head of Oro-dental Division - National
Research Centre. Who honoured me by his supervision, constant
support and encouragement till this work become a reality.

Dedication

This work is dedicated

To my Precious Parents for their love and their support in every step of my life.

To My Husband for his endless patience and support.

To My Sun shine Daughter Danya and My lovely Sons Mohammed, Mohannad and Eyad for their tolerance.

To my very special friend Rasha EL Saeed for her constant support and encouragement.

List of Contents		
Title	Page	
List of Tables	i	
List of Figures	iii	
List of abbreviations	ix	
Introduction		
Review of literature		
[1] Light Curing Units	6	
[2] Degree of Conversion	17	
[3] Kinetics of Polymerization Shrinkage Strain	34	
[4] Finite Element Analysis	42	
Aim of the study	47	
Materials and methods	48	
Results	72	
Discussion	99	
Summary and conclusions	113	
References	117	
Arabic summary		

List of Tables

Table		Page
Table (1)	Resin composite materials (manufacturer,	48
	compositions and their lot numbers)	
Table (2)	Characteristics of light curing units used in this study	50
Table (3)	Levels of the study	51
Table (4)	Factorial design of variables interactions for polymerization shrinkage strain test	51
Table (5)	Factorial design of variables interactions for degree of conversion test	52
Table (6)	Young's modulus and Poisson's ratio of tested resin composite materials	67
Table (7)	Nodes and Elements of tested resin Composite Materials	68
Table (8)	Two way ANOVA for the effect of different resin	72
	composite materials and curing devices on degree of conversion	
Table (9)	Means and standard deviations of degree of conversion for	73
	tested resin composite materials regardless the curing devices	
Table (10)	Means and standard deviations for the effect of the tested	74
	curing devices on the degree conversion regardless resin	
	composite materials	
Table (11)	Means and standard deviations results for the effect of the	76
	tested resin composite materials and curing devices on the	
	degree of conversion	

Table (12)	Two way ANOVA for the effect of different resin	78
	composite materials and curing devices on polymerization	
	shrinkage strain	
Table (13)	Means and standard deviations of polymerization	79
	shrinkage strain values (µm/m) for tested resin composite	
	materials regardless the curing devices	
Table (14)	Means and standard deviations results for the effect	80
	of polymerization shrinkage strain values (μm/m) for	
	tested curing devices regardless the resin composite	
	materials	
Table (15)	Means and standard deviations results for the effect of	81
	tested resin composite materials and curing devices on the	
	polymerization shrinkage strain	
Table (16)	The maximum and minimum Von Mises' equivalent stress	83
	for the tested resin composite materials under compressive	
	loading	
Table (17)	The maximum and minimum Summation Displacement	84
	Magnitude (Usum) in XYZ direction for the tested resin	
	composite materials under compressive loading	
Table (18)	The maximum and minimum Von Mises' equivalent stress	91
	for the tested resin composite materials under tensile	
	loading	
Table (19)	The maximum and minimum Summation Displacement	92
	Magnitude (Usum) in XYZ direction for the tested resin	
	composite materials under tensile loading	

List of Figures Figure Page Figure (1) Teflon mold with dimension of $(2 \times 2 \text{ mm})$ 56 Figure (2) Tetric Evoceram Bulk Fill resin composite material 56 Figure (3) GC Kalori resin composite material 57 Figure (4) Silorane Filtek P90 resin composite material 57 Figure (5) Light Emitting Diode (LED) 58 Figure (6) Blue diode-pumped solid-state laser (DPSS) Laser 58 connected to optical fiber for laser coupling Figure (7) 59 Gold Plated Resin-Composite Instrument Resin composite material was packed in the Teflon mold 59 Figure (8) Figure (9) Light curing devices were in a perpendicular position on 59 the specimen top surface during resin composite material curing. a] LED b] DPSS Figure (10) a) Mortar and pestle b) In which specimen was pulverized 60 into fine powder using a mortar and pestle Figure (11) a) Components of special evaluable kBr die 60 b) Manual hydrolytic press used to compress and prepare KBr pellet

KBr pellet (mixture of the tested resin composite material

and KBr powder) for degree of conversion measurement

61

Figure (12)

b) KBr pellet holder attachment in optical compartment of the FTIR for DC analysis Figure (14) Fourier Transform Infrared Spectroscopy (FTIR) 61 Figure (15) Strain gage a] Strain gage package 64 b] Strain gage foil Figure (16) a] Strain gage foil was attached to the flat glass surface 64 b] Strain gage in place under the mold Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED b] DPSS Laser
Figure (14) Fourier Transform Infrared Spectroscopy (FTIR) 61 Figure (15) Strain gage a] Strain gage package 64 b] Strain gage foil Figure (16) a] Strain gage foil was attached to the flat glass surface 64 b] Strain gage in place under the mold Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED
Figure (15) Strain gage a] Strain gage package 64 b] Strain gage foil Figure (16) a] Strain gage foil was attached to the flat glass surface 64 b] Strain gage in place under the mold Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED
b] Strain gage foil Figure (16) a] Strain gage foil was attached to the flat glass surface b] Strain gage in place under the mold Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED 65
Figure (16) a] Strain gage foil was attached to the flat glass surface b] Strain gage in place under the mold Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED 64
b] Strain gage in place under the mold The strain gage foil connected to a strain meter which was connected to the computer software a] LED 65
Figure (17) The strain gage foil connected to a strain meter which was connected to the computer software a] LED 65
connected to the computer software a] LED
hl DPSS Laser
OJ DI SS Laser
Figure (18) Geometric model of the tested resin composite materials 69
(2mm × 2mm)
Figure (19) (a) Mesh model for tested resin composite materials 69
(b) three degree of freedoms (translations in the
global directions)
Figure (20) Mesh model surface of the tested resin composite 70
materials were subjected to
(a) Compressive load of 200N
(b) Tensile load of 200N
Figure (21) Bar chart showing degree of conversion for tested 74
resin composite materials regardless the curing
devices
Figure (22) Bar chart for the effect of the tested curing devices on 75
degree conversion regardless resin composite
materials

Figure (23)	Bar chart showing the results for the effect of the	77
rigure (23)	tested resin composite materials and curing devices	, ,
	on the degree of conversion	
Figure (24)	Bar chart of the polymerization shrinkage strain	79
8 ()	values (µm/m) for tested resin composite materials	
	regardless the curing devices	
Figure (25)	Bar chart for the effect of polymerization shrinkage	80
	strain values (µm/m) for tested curing devices	
	regardless the resin composite materials	
Figure (26)	Bar chart showing the results for the effect of tested	82
	resin composite materials and curing devices on the	
	polymerization shrinkage strain	
Figure (27)	Bar chart that showed the maximum and minimum	83
	Von Mises' equivalent stress for the tested resin	
	composite materials under compressive loading	
Figure (28)	Bar chart that showed the maximum and minimum	84
	Summation Displacement Magnitude (Usum) in	
	XYZ direction for the tested resin composite	
	materials under compressive loading	
Figure (29)	[a, b, c, d] representing the Nodal solution of stresses	85
	that developed in Bulk fill mesh model under	
	compressive loading [S1-S2-S3-Seqv] respectively	
	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (30)	[a, b, c, d] representing the Nodal solution of	86
	displacement that happened in Bulk fill mesh model	
	under compressive loading [UX-UY- UZ - Usum]	
	respectively	

	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (31)	[a, b, c, d] representing the Nodal solution of stresses	87
	that developed in Kalore mesh model under	0,
	compressive loading [S1-S2-S3-Seqv] respectively	
	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (32)	[a, b, c, d] representing the Nodal solution of	88
	displacement that happened in Kalore mesh model	
	under compressive loading [UX-UY- UZ and Usum]	
	respectively	
	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (33)	[a, b, c, d] representing the Nodal solution of stresses	89
	that developed in Silorane mesh model under	
	compressive loading [S1-S2-S3-Seqv] respectively	
	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (34)	[a, b, c, d] representing the Nodal solution of	90
	displacement that happened in Silorane mesh model	
	under compressive loading [UX-UY- UZ and Usum]	
	respectively	
	■ The red color represent the maximum value,	
	while the blue color represent the minimum value	
Figure (35)	Bar chart showed the maximum and minimum Von	91
	Mises' equivalent stress for the tested resin composite	
	materials under tensile loading	