Evaluation of treating cases of developmental dysplasia of the hip presented at the walking age with closed reduction with or without adductor tenotomy.

Thesis By

Osama Hassan Elghobashy
In partial fulfillment of M.D. degree in orthopaedic
surgery

Supervisors

Prof. Mohamed Abdelhalim Kaddah
Prof. of Orthopaedic Surgery Faculty of Medicine,
Cairo University

Prof. Hassan Magdy Al Barbary
Prof. of Orthopaedic Surgery Faculty of Medicine,
Cairo University

Dr. Amr Said Arafa
Lecturer of Orthopaedic Surgery Faculty of Medicine,
Cairo University

Cairo University 2015

Acknowledgment

First of all I would like to thank **Allah** for helping me to finish this work. I will never forget my parents for all their support throughout my life.

I cannot express enough thanks to **Dr Mohamed Kadah**, professor of orthopedic surgery who gave me a great support and encouragement. I would like to offer my special thanks to **Dr Hassan Al Barbary** for his supervision and finally I am particularly grateful for the assistance given by **Dr Amr Arafa** who did not hesitate to provide advice and help throughout this work.

Finally I cannot ignore the support given by my wife, and I wish that my children, Yahya, Lama and Youssef will grow up and understand how much I love them.

Abstract

includes treatment with a Pavlik harness or other device.

Although there are many obstacles for closed reduction and hip spica cast application for cases of developmental dysplasia of the hip in older child, still we can achieve satisfactory results in properly selected cases which must be observed carefully until skeletal maturity. The orthopedic surgeon must be aware of the possible complications either early or late and should not hesitate to perform appropriate secondary procedures depending on the development of the hip joint after reduction during the follow up period.

Key words:

Evaluation of treating cases of developmental dysplasia of the hip presented at the walking age with closed reduction with or without adductor tenotomy.

CONTENTS

• List of figures	I
• List of tables	V
• List of charts	VI
• List of abbreviations	VII
Part I	
• Introduction	1
• Aim of work	3
Developmental anatomy	
• Embryology of the hip	4
• Growth of the proximal end of the femur	7
• Factors affecting acetabular depth	10
Da4h a an a4 an an	
Pathoanatomy	
• What is the time of dislocation?	12
Barriers to reduction	16
Epidemiology of DDH	
• Definitions and history:	23
• Etiology	26

Diagnosis

Clinical examination	34
Radiographic findings	40
Treatment	
Neonatal period	58
Pavlik harness	59
• Above 6 months	63
Closed reduction	68
Surgical treatment	73
• Complications	82
Part II	
Patients and methods	89
• Results	115
• Discussion	142
• Summary	151
• References	152
Arabic summary	168

List of figures

NO.	Title	Page
Figure 1	Section through the hip of a human embryo	4
Figure 2	Normal acetabular cartilage complex of an infant.	6
Figure 3	Section through the proximal part of the femur.	9
Figure 4	The Articulo-Trochanteric Distance	10
Figure 5	Diagram of the innominate bone of an adolescent.	11
Figure 6	Ortolani sign	13
Figure 7	Pathology of the dislocatable hip.	14
Figure 8	Intra-articular obstacles for reduction.	15
Figure 9	The iliopsoas tendon as an obstacle to reduction.	17
Figure 10	Limbus and Neolimbus	20
Figure 11	The pelvi-femoral muscles	21
Figure 12	Dislocation, subluxation and dysplasia.	24
Figure 13	Types of breech presentation.	28
Figure 14	Wrong postnatal positioning as a cause of DDH	30
Figure 15	Asymmetrical inguinal or thigh skin folds in DDH	34
Figure 16	Barlow test.	36
Figure 17	Ortolani test.	36
Figure 18	Galeazzi sign.	37
Figure 19	Trendelenburg gait.	38
Figure 20	The Klisic test.	39
Figure 21	Alpha (α) and beta (β) angles on ultrasonography.	41

Figure 22	Classic lines on radiograph for the immature hip.	45
Figure 23	Acetabular index and the medial gap.	45
Figure 24	The Wilberg center-edge angle	46
Figure 25	The acetabular teardrop figure	47
Figure 26	The false-profile radiographic view	48
Figure 27	Arthrogram of a normal hip in a neutral position.	49
Figure 28	Insertion of a needle for arthrography of the hip.	50
Figure 29	Normal and abnormal hips arthrogram.	51
Figure 30	Computed Tomography scan findings	53
Figure 31	Assessing the degree of dysplasia by CT scan.	54
Figure 32	The Pavlik harness.	59
Figure 33	The technique for gradual reduction using traction.	67
Figure 34	The safe zone for reduction.	69
Figure 35	Technique of application of hip spica cast.	71
Figure 36	Before and After the Ludloff procedure	74
Figure 37	The technique for anterior exposure of a dislocated hip.	77
Figure 38	Salter-type capsulorrhaphy.	79
Figure 39	Derotational femoral shortening osteotomy.	80
Figure 40	Normal and type I ischemic necrosis of the femoral head.	84
Figure 41	Bucholz-Ogden type II pattern of avascular necrosis.	84
Figure 42	Type III avascular necrosis	85
Figure 43	Type IV avascular necrosis	85
Figure 44	Tönnis grades for hip dislocation.	97
Figure 45	Preoperative skin traction.	98

Figure 46	Zones of safety.	100
Figure 47	Technique of testing the safety zone.	101
Figure 48	Percutaneous adductor tenotomy for the right hip.	102
Figure 49	Intraoperative radiological assessment.	103
Figure 50	Check the quality of reduction using the C-arm.	104
Figure 51	Stockinet and cotton roll application before casting.	105
Figure 52	Protection of the bony prominence using felt.	105
Figure 53	Cast molding.	106
Figure 54	Hip spica enforcement.	107
Figure 55	Final view of the spica.	107
Figure 56	CT scan images before and after reduction.	108
Figure 57	Changing of hip spica cast under general anesthesia.	109
Figure 58	Dirty cast.	109
Figure 59	Walking abduction brace.	110
Figure 60	X-ray with the brace on.	111
Figure 61	Right side gluteal abscess.	120
Figure 62	Incision and drainage of the abscess.	120
Figure 63	Fracture of the distal femur as a brace complication.	121
Figure 64	Muscle wasting due to orthosis.	122
Figure 65	X-ray of case no.13 with bilateral DDH.	125
Figure 66	X-ray post reduction case no. 13.	125
Figure 67	CT scan confirmed the posterior dislocation of the right hip.	126
Figure 68	X-ray post open reduction .	127
Figure 69	X-ray and CT of case no. 4 with bilateral hip dislocation.	128

Figure 70	Post reduction radiology of case no. 4.	129
Figure 71	Case no. 4 in hip spica cast.	129
Figure 72	x-ray and photo of Case no. 4 with brace	130
Figure 73	Open reduction with Salter osteotomy for the right hip	130
Figure 74	X-ray showing bilateral AVN	131
Figure 75	X-ray case no. 11.	132
Figure 76	Post reduction x-ray of case no. 11.	132
Figure 77	x-ray and CT of case no.11 showed left hip redislocation.1	133
Figure 78	Post operative x-ray after Salter osteotomy case no. 11.	133
Figure 79	Fracture left femur post operatively of case no.11.	134
Figure 80	Final x-ray of case no.11.	134
Figure 81	x-ray of case no.19 with left hip DDH	136
Figure 82	Post reduction x-ray of case no. 19.	136
Figure 83	Follow up x-ray of case no. 19.	137
Figure 84	Final follow up x-ray for case no.19.	137
Figure 85	Negative Trendelenburg test for case no. 19	138
Figure 86	Case no.15. x-rays shows bilateral DDH	140
Figure 87	Treatment of case no.15. with cast then brace	140
Figure 88	X-rays of case no.15 with well reduced position.	141
Figure 89	Negative Trendelenburg test for case no. 15.	141

List of table

No.	Title	Page
Table 1	Graf classification system for DDH	42
Table 2	comparison of the Kalamchi-MacEwen and Bucholz-Ogden systems	86
Table 3	Side and number of affected hips.	90
Table 4	Two group presentation.	92
Table 5	Tönnis scoring system for the severity of hip dislocation.	96
Table 6	Modified McKay criteria	112
Table 7	modified score system of Trevor et al	113
Table 8	Statistical results of the two groups.	115
Table 9	Success rate in relation to severity of dislocation.	116
Table 10	Comparison of clinical outcome between the two groups using modified MacKay scoring system	118
Table 11	Incidence of avascular necrosis.	122
Table 12	Clinical results according to modified MacKay scoring system.	138
Table 13	Comparative study of different techniques of closed reduction.	144

List of charts

Chart 1	Female: male ratio.	91
Chart 2	Mode of delivery.	92
Chart 3	Family history of DDH.	93
Chart 4	Incidence by side.	93
Chart 5	Severity of hip dislocation as graded by Tönnis criteria.	97
Chart 6	Percentage of performed tenotomy.	103
Chart 7	Drop of acetabular index angle after closed reduction in	117
	relation to severity of dislocation.	

List of abbreviations

DDH	Developmental dysplasia of the hip
AIA	Acetabular index angle
CEA	Central edge angle
AVN	Avascular necrosis
ON	Osteonecrosis
CT	Computerized tomography
MRI	Magnetic resonance imaging
MRSA	Methicillin-resistant staphylococcus aureus organism
GR	Gradual reduction
AT	Articulo-trochanteric distance

Introduction

Developmental dysplasia of the hip (DDH) has been recognized from the time of Hippocrates. It is a common condition which remains controversial and confusing despite diagnostic and treatment advances. The terminology can be unclear and inconsistent, diagnosis can be subtle and there can be long-term sequelae even in patients given optimal treatment ⁽¹⁾.

The etiology of developmental dysplasia of the hip (DDH) is multifactorial with both hereditary and environmental contributions acting as internal and external influences, respectively. Breech presentation, female sex, positive family history, first-born children, and left hip affected are commonly associated with DDH ⁽²⁾ ⁽³⁾. Additional factors include intrauterine positioning syndromes (torticollis, metatarsus adductus, femoral anteversion, genu recurvatum, oligohydramnios, and twin pregnancy), swaddling, and hip capsular laxity ⁽⁴⁾.

Ultrasound screening can be 'selective' for high-risk groups or 'universal' for all neonates. The use of ultrasound in the detection of DDH was first proposed by Graf in the 1980s ⁽⁵⁾. Since then many different modifications have developed which fall into two main groups: static tests that assess morphology and dynamic tests which assess stability ⁽⁶⁾.

The goal of orthopedic management is to identify dysplasia at the earliest possible time and to apply treatment methods designed to normalize the hip, which includes treatment with a Pavlik harness or other device. Infants that present after

Introduction

age 6 months commonly require closed reduction plus hip spica immobilization followed by abduction bracing. Regular radiographic follow-up is performed with expectations for normal hip development. Unfortunately this desired course does not always occur, leaving some children with residual dysplasia despite good early treatment ⁽⁷⁾.

When closed reduction of the hip fails in developmental dysplasia or extreme positioning is required to maintain a reduction, the standard of care is to perform an open reduction. However, many aspects of surgery for open reduction in developmental dysplasia remain controversial, including the indications, timing in relation to the appearance of the ossific nucleus, surgical approach, the management of extra-articular and intra-articular obstructions to reduction, and the duration and position of postoperative immobilization ⁽⁸⁾.

Since the preliminary report by Weinstein and Ponseti in 1979 and their long-term follow-up study of 93 hips in 1997, ⁽⁹⁾ open reduction by the medial approach has received substantial interest and increasing support. The reported advantages of the medial approach are that it is safe and effective ⁽⁸⁾.

Osteonecrosis of the capital femoral epiphysis is a major complication of treatment for developmental dysplasia of the hip (DDH) with reported incidences ranging from 6% to 48% ⁽¹⁰⁾. This irreversible condition is associated with subsequent hip pain and declining hip function in childhood ⁽¹¹⁾. Premature arthritis requiring hip arthroplasty as early as during the third decade is common with severe forms. For these reasons, osteonecrosis is considered one of the most important quality indicators of DDH treatment ⁽¹²⁾.

Aim of the work

The purpose of this study is to identify predictive factors that would best indicate the satisfactory functional and radiological outcome after closed reduction of developmental dysplasia of the hip (DDH) in patients between 9 months and 3 years.