

Nutritional Support in Polytrauma Patients with Organ Dysfunction

An Essay

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Samar Mostafa Abdel-Rahman Shoeib

(M.B.B.Ch)
Menofeya University

Supervised by

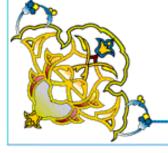
Dr. Gamal Eldin Mohammad Ahmad Elewa

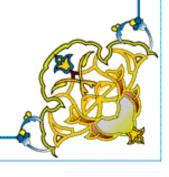
Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Hanaa Mohammad Abdallah El-Gendy

Associate Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Eman Mohammad Kamal Abo-Saif


Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University


Faculty of Medicine
Ain Shams University
2016

صدق الله العظيم

التوبة الآية ١٠٥

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Dr. Gamal Eldin Mohammad Ahmad Elewa**, Professor of Anesthiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his great support, advice, and remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Dr. Hanaa Mohammad**Abdallah El-Gendy, Associate Professor of Anesthiology,
Intensive Care and Pain Management, Faculty of
Medicine, Ain Shams University, for adding a lot to this
work by her experience and for her keen supervision.

I am also thankful to **Dr. Eman Mohammad Kamal Abo-Sief**, Lecturer of Anesthiology, Intensive Care and
Pain Management, Faculty of Medicine, Ain Shams
University, for her supervision, co-operation and direction
that extended throughout this work.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Samar Mostafa

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Essay	3
Importance of nutrition in polytrauma patients	s4
Assessment of nutritional needs in polytrau	ıma
patients with various organ dysfunction	30
Selected nutrition in various organ dysfunction	n in
polytrauma patients	79
Summary	106
References	110
Summary in Arabic	

Tist of Abbreviations

Abb.	Full term
ACTH	Adreno corticotrophic hormone
ADP	Adenosine diphosphate
AKI	Acute kidney injury
ALI	Acute lung injury
AMP	Adenosine monophosphate
AMPA	Amino-3-hydroxy-5-methyl-4-isoxazole
	propionic acid
APACHE	Acute physiology and chronic health evaluation
APC	Antigen presenting cell
ARDS	Acute respiratory distress syndrome
ARF	Acute renal failure
ASPEN	American society of parentral and enteral
	nutrition
ATI	Abdominal trauma index
ATLS	Advanced trauma life support
ATP	Adenosine triphosphate
BCAAs	Branched chain fatty acids
BEE	Basal energy expenditure
BMI	Body mass index
BMR	Basal metabolic rate
C difficile	Clostridium difficile
Ca ²⁺	Calcium
CARS	Compensatory antinflammotory response
	syndrome
CIs	Cardiac indices
cm.	Centi meter
COPD	Chronic obstructive pulmonary disease
CPGs	Clinical practice guidelines
CRRT	Continuous renal replacement therapy
Cu	Copper
CVVH	Continuous veno-venous hemo-filteration
CVVHD-F	Continuous veno-venous hemo-diafilteration
d	Day
DHA	Docosahexaenoic acid
DM	Diabetes Mellitus
DNA	Deoxyribonucleic acid

Abb.	Full term
DO ₂	Oxygen delivery
DPEJ	Direct percutenous endoscopy jejunostomy
e.g.	Exempli gratia
ebb phase	Early postinjury phase
EEE	Estimated energy expenditure
EN	Enteral nutrition
EPA	Eicosapentaenoic acid
ESPEN	European society of enteral and parentral
	nutrition
FDA	Food and drug administration
Fe	Iron
g	Gram
GALT	Gut-associated lymphoid tissue
GIT	Gastrointestinal tract
GRVs	Gastric residual volumes
G-SH	Glutathione
H ⁺	Hydrogen
H_2O_2	Hydrogen peroxide
HD	Hemodialysis
Ht.	Height
i,e.	Id est
IBW	Ideal body weight
IC	Indirect calorimetry
ICAM-1	Intracellular adhesion molecule-1
ICU	Intensive care unit
IEN	Immune enhancing nutrition
IgA	Immuno-globulin A
IL-1	Interleukin -1
IL-6	Interleukin -6
I.M.	Intramascular
ISS	Injury severity score
I.V.	Intravenous
K ⁺	Potassium
Kcal	Kilo calory
kD	Kilo Dalton
Kg.	Kilo gram
L	Liter
LBM	Lean body mass

Abb.	Full term
LCT	Long chain triglycerides
MALT	Mucosa-associated lymphoid tissue
MCP-1	Monocyte chemoattractant protein-1
mEq/d	Milli equivalent / day
mEq/L	Milli equivalent / liter
Mg ²⁺	Magnesium
mg	Milli gram
mg/dl	Milli gram / deciliter
ml	Milli liter
mmol/L	Milli mole / liter
mmol/kg	Milli mole / kilogram
Mn	Manganese
MODS	Multi organ dysfunction syndrome
MOF	Multi organ failure
mosmol/L	Milli osmole / liter
MUFA	Mono unsaturated fatty acid
MUST	Malnutrition universal screening tool
MV	Minute ventilation
N ₂	Nitrogen molecule
n-3 PUFA	N-3 poly unsaturated fatty acid
Na ⁺	Sodium
NFKB	Nuclear factor –kappa B
NICE	National institute for health and clinical
	excellence
NMDA	N-methyl-D-aspartate
NO	Nitric oxide
NRS	Nutritional risk screening
02	Oxygen molecule
02	Super oxide anions
OH.	Hydoxyl ions
ONS	Oral nutritional supplements
PEG	Percutenous endoscopic gastrostomy
PEG/J	Percutenous endoscopic gastrostomy with a
	jejunal tube
PEW	Protein energy wasting
PICC	Peripherally inserted centeral catheters
PN	Parentral nutrition
PPAR	Peroxime proliferator-activated receptor

Abb.	Full term
RDA	Recommended dietary allowance
REE	Resting energy expenditure
RFS	Refeeding syndrome
RNA	Ribonucleic acid
RRT	Renal replacement therapy
SCCM	Society of critical care medicine
Se	Selenium
SGA	Subjective global assessment
SICAM-1	Soluble intercellular adhesion molecule-1
SIRS	Systemic inflammatory response syndrome
SNAQ	Short nutritional assessment questionnaire
SOD	Super oxide dismutase
SOFA	Sequential organ failure assessment
T	Time
TBI	Traumatic brain injury
tds	Three times daily
TEE	Total energy expenditure
TNF	Tumor necrosis factor
TPN	Total parenteral nutrition
UUN	Urine urea nitrogen
VAP	Ventilator aquired pneumonia
VCO ₂	Carbon dioxide exchange
VO_2	Oxygen consumption
Wt.	Weight
Zn	Zinc

Tist of Tables

Table No.	Title	Page No.
Table (1):	Metabolic changes after major trauma	5
Table (2):	Proposed mechanisms of neuronal i from glucose	•
Table (3):	Indications for immune-enhancing e nutrition	
Table (4):	Consequences of underfeeding overfeeding	
Table (5):	Initial nutritional risk screening	34
Table (6):	Final nutritional risk screening	35
Table (7):	Subjective global assessment (SGA).	36
Table (8):	Factors affecting accuracy of carequirement estimates	
Table (9):	Factors commonly affect en expenditure in hospitalized patients	0
Table (10):	Typical properties of commonly intravenous solutions	
Table (11):	Assessment and monitoring of balance	
Table (12):	Some trace elements and their meta functions	

Tist of Tables (Cont...)

Table No.	Title	Page No.
Table (13):	Daily requirements of electrolytes, elements, and vitamins	
Table (14):	Immuno-modulatory nutrients and functions	
` ´	Main pathophysiologic features refeeding syndrome	
Table (16):	Clinical manifestations of electrolyte vitamin abnormalities associated	
	refeeding syndrome	71

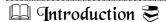
List of Figures

Figure No.	. Title	Page No
Figure (1):	Host defence response after trauma	7
Figure (2):	Ischemia/reperfusion injury	9
Figure (3):	Mechanism of injury after traum brain injury	
Figure (4):	Oxidation cascade and trace-element dependent antioxidant enzymes	
Figure (5):	Short Nutritional Assessr Questionnaire (SNAQ)	
Figure (6):	Malnutrition Universal Screening (MUST)	
Figure (7):	Normagram for predicting stress factors associated with injury and illness	
Figure (8):	Skeletal muscle wasting in criticall patients according to energy balance.	~
Figure (9):	Examples of enteral access	63
Figure (10):	Causes of micronutrient deficiency burns and trauma patients	
Figure (11):	Recommendations for immune enhan nutrition in the adult critically patients.	ill

Nutritional Support in Polytrauma Patients with Organ Dysfunction

Abstract

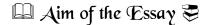
A significant number of deaths in polytrauma occurs days to weeks after the primary insult, caused by infection and organ failure and resultant hypercatabolic state, causing acute malnutrition. Nutrition therapy should be planned and integrated with other measures of management for patients with polytrauma and major burns. The goals of nutrition therapy in these patients include early delivery of nutritional components (energy, protein, fluid and micronutrients), by enteral, parenteral or both routes, to prevent protein energy wasting (PEW), preserve lean body mass (LBM), to promote wound healing. However, resuscitation efforts should precede nutritional support. Critically ill polytrauma patients with their proinflammatory states and increased oxygen free radicals production will benefit from immunonutrion. Immunonutrients include glutamine, arginie, ω -3 fatty acids, Selenium and some vitamins. They are substrates which modulate inflammatory process in order to decrease critical illness severity and avoid complications.


<u>Key words</u>: Polytrauma, critically ill patients, systemic inflammatory response syndrome (SIRS), multiorgan failure (MOF), enteral nutrition (EN), parentral nutrition (PN), immunonutrition, protein energy wasting (PEW).

Introduction

A significant number of deaths in polytrauma occurs days to weeks after the primary insult, caused by infection and organ failure and their resultant hypercatabolic state, causing acute protein malnutrition. Nutrition therapy should be planned and integrated with other measures of management for patients with polytrauma and major burns. After the initial measures dictated by advanced trauma life support (ATLS), including the airway (A), breathing (B), circulation (C), disability (D) and exposure (E), the letter (F) for feed should be included to reflect the significance of early nutrition support in trauma. There is proportionate relation between nutritional status and the outcome of surgical intervention. Nutritional deficits are associated with increased risk of morbidity and mortality (Bicudo-Salomao et al, 2013).

The catabolic state in polytrauma patients must be early recognized and properly managed by appropriate nutritional support. So, there is a great significance of nutrition in these critically ill intensive care unit (ICU) patients (Hasenboehler et al, 2006).


Over the past few decades, the studying of the molecular and biological influences of nutrients in

maintaining homeostasis in the critically ill patients has made great achievements. Conventionally, nutritional support in critically ill patients was considered adjunctive measure designed to deliver exogenous fuels to meet the patient's demands during the periods of stress response (McClave et al, 2009).

Nutrition therapy enriched with immunomodulatory substrates aim to improve the hyperinflammatory phase, called systemic inflammatory response syndrome (SIRS) to avoid sepsis and multiorgan failure (MOF) (Bastian and Weimann, 2002).

The choice of nutritional care plan should to be altered according to the organ dysfunction to avoid complications as in cases of head injuries, respiratory failure, renal impairment or hepatic impairment (MaClave et al, 2009).

Aim of the Essay

The aim of essay was to highlight and discuss the nutritional derangement in polytrauma patients and to identify the suitable nutritional support for such polytrauma patients associated with organ dysfunction.